(本題滿分12分)某校從高一年級學生中隨機抽取40名學生,將他們的期中考試數(shù)學成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:,,…,后得到如圖的頻率分布直方圖.

(1)求圖中實數(shù)的值;

(2)若該校高一年級共有學生640人,試估計該校高一年級

期中考試數(shù)學成績不低于60分的人數(shù);

(3)若從數(shù)學成績在兩個分數(shù)段內的學生中隨機選取兩名學生,求這兩名學生的數(shù)學成績之差的絕對值不大于10的概率.

 

【答案】

(1)(2)544(3)

【解析】

試題分析:(1)由于圖中所有小矩形的面積之和等于1,

所以.                       ……2分

解得.                                                         ……3分

(2)根據(jù)頻率分布直方圖,成績不低于60分的頻率

.                                         ……5分

由于該校高一年級共有學生640人,利用樣本估計總體的思想,

可估計該校高一年級數(shù)學成績不低于60分的人數(shù)約為人.    ……6分

(3)成績在分數(shù)段內的人數(shù)為人,分別記為,.   ……7分

成績在分數(shù)段內的人數(shù)為人,分別記為,,,. ……8分

若從數(shù)學成績在兩個分數(shù)段內的學生中隨機選取兩名學生,

則所有的基本事件有:,,,,

,,,,,,,

 共15種.                                                     ……10分

如果兩名學生的數(shù)學成績都在分數(shù)段內或都在分數(shù)段內,那么這兩名學生的數(shù)學成績之差的絕對值一定不大于10.如果一個成績在分數(shù)段內,另一個成績在分數(shù)段內,那么這兩名學生的數(shù)學成績之差的絕對值一定大于10.

記“這兩名學生的數(shù)學成績之差的絕對值不大于10”為事件,則事件包含的基本事件有:

,,,,,共7種.   ……11分

所以所求概率為.                                           ……12分

考點:本小題主要考查頻率分布直方圖的應用和古典概型概率的求解,考查學生識圖、用圖的能力和運算求解能力.

點評:解決與頻率分布直方圖有關的題目時,要注意到頻率分布直方圖中縱軸表示的是

頻率/組距,不是頻率,圖中小矩形的面積才表示頻率.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本題滿分12分)

某校從參加高一年級期中考試的學生中隨機抽出名學生,將其數(shù)學成績(均為整數(shù))分成六段,后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

(Ⅰ)求分數(shù)在內的頻率,并補全這個頻率分布直方圖;

   (Ⅱ)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此估計本次考試的平均分;

   (Ⅲ)若從名學生中隨機抽取人,抽到的學生成績在分,在分,在分,用表示抽取結束后的總記分,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆四川省南充市高三適應性考試數(shù)學理卷 題型:解答題

(本題滿分12分)
某單位6個員工借助互聯(lián)網(wǎng)開展工作,每個員工上網(wǎng)的概率都是0.5,且相互之間無影響.
(1)求至少3個員工同時上網(wǎng)的概率;
(2)求至少幾個員工同時上網(wǎng)的概率小于0.3?

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆湖北省高二上學期期中考試理科數(shù)學試卷(解析版) 題型:解答題

(本題滿分12分)某校從高二年級學生中隨機抽取60名學生,將其期中考試的政治成績(均為整數(shù))分成六段: ,,…, 后得到如下頻率分布直方圖.

(Ⅰ)求分數(shù)在內的頻率;

(Ⅱ)用分層抽樣的方法在80分以上(含80分)的學生中抽取一個容量為6的樣本,將該樣 本看成一個總體,從中任意選取2人, 求其中恰有1人的分數(shù)不低于90分的概率.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆云南省高二上學期期中考試理科數(shù)學試卷(解析版) 題型:解答題

(本題滿分12分)某廠生產(chǎn)兩型會議桌,每套會議桌需經(jīng)過加工木材和上油漆兩道工序才能完成。已知做一套型會議桌需要加工木材的時間分別為1小時和2小時,上油漆需要的時間分別為3小時和1小時。廠里規(guī)定:加工木材的時間每天不得超過8小時,上油漆的時間每天不得超過9小時。已知該廠生產(chǎn)一套型會議桌分別可獲得利潤2千元和3千元,試問:該廠每天應分別生產(chǎn)兩型會議桌多少套,才能獲得最大利潤?最大利潤是多少?

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年陜西省高二上學期期中考試數(shù)學理卷 題型:解答題

(本題滿分12分)某學校校辦工廠有毀壞的房屋一座,留有一面14m的舊墻,現(xiàn)準備利用這面墻的一段為面墻,建造平面圖形為矩形且面積為126的廠房(不管墻高),工程的造價是:

(1)修1m舊墻的費用是造1m新墻費用的25%;

(2)拆去1m舊墻用所得的材料來建1m新墻的費用是建1m新墻費用的50%.

問如何利用舊墻才能使建墻的費用最低?

 

查看答案和解析>>

同步練習冊答案