將一根長為4米的木棍鋸成兩段,則鋸成的兩段都大于1米的概率是
 
考點:幾何概型
專題:計算題,概率與統(tǒng)計
分析:由題意可得,屬于與區(qū)間長度有關(guān)的幾何概率模型,試驗的全部區(qū)域長度為4,基本事件的區(qū)域長度為2,代入幾何概率公式可求.
解答: 解:設(shè)“長為4米的木棍”對應(yīng)區(qū)間[0,4],“兩段長都大于1米”為事件 A,則滿足A的區(qū)間為[1,3],
根據(jù)幾何概率的計算公式可得,P(A)=
3-1
4-0
=
1
2

故答案為:
1
2
點評:本題考查幾何概型,解答的關(guān)鍵是將原問題轉(zhuǎn)化為幾何概型問題后應(yīng)用幾何概率的計算公式求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l恒過定點(-1,-1),圓C的方程為x2+y2+2ax-2ay+a2=0(a≠0).
(1)如果a=2時,直線l被圓C截得的弦長為2
3
,求直線l的方程;
(2)如果圓C上存在不同的兩點到原點的距離都等于1,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3
x+1
ax-1
(a∈R)為奇函數(shù).
(1)求a的值;
(2)設(shè)函數(shù)g(x)=f-1(x)+log 
1
3
t存在零點,求實數(shù)t的取值范圍;
(3)若不等式f(x)-m≥3x在x∈[2,3]上恒成立,求實數(shù)m最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,且滿足Sn+1=2an,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)在數(shù)列{an}的每兩項之間都按照如下規(guī)則插入一些數(shù)后,構(gòu)成新數(shù)列:an和an+1兩項之間插入n個數(shù),使這n+2個數(shù)構(gòu)成等差數(shù)列,其公差記為dn,求數(shù)列{
1
dn
}的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①.若函數(shù)y=f(x)在區(qū)間(a,b)上單調(diào)遞增,則f′(x)>0;
②.若函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是一條連續(xù)不斷的曲線,則它在該區(qū)間上必有最值;
③.若函數(shù)y=f(x)和y=g(x)同時在x=a處取得極大值,則F(x)=f(x)+g(x)在x=a處不一定取得極大值;
④.若0<x<
π
2
,則tanx>x+
x3
3

其中為真命題的有
 
.(填相應(yīng)的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中三個角的對邊分別記為a、b、c,其面積記為S,有以下命題:
①S=
1
2
a2
sinBsinC
sinA
;
②若2cosBsinA=sinC,則△ABC是等腰直角三角形;
③sin2C=sin2A+sin2B-2sinAsinBcosC;
④(a2+b2)sin(A-B)=(a2-b2)sin(A+B)則△ABC是等腰或直角三角形.
其中正確的命題有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x-sin
x
2
cos
x
2
的導(dǎo)數(shù)為g(x),則函數(shù)g(x2)的最小值=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=2sin
1
2
x變換成曲線y=sin
1
3
x的伸縮變換公式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩形ABCD,AB=2AD=2,P為矩形ABCD內(nèi)一點(包括矩形邊界),
AP 
=x
AB
+y
AD
,則(x+1)2+(y+1)2的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案