直線在平面外是指( 。
A、直線與平面沒有公共點(diǎn)
B、直線與平面相交
C、直線與平面平行
D、直線與平面最多只有一個(gè)公共點(diǎn)
考點(diǎn):空間中直線與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:根據(jù)直線在平面外是指:直線平行于平面或直線與平面相交,由此依次判斷可得答案.
解答: 解:根據(jù)直線在平面外是指:直線平行于平面或直線與平面相交,
∴直線在平面外,則直線與平面最多只有一個(gè)公共點(diǎn).
故選D.
點(diǎn)評(píng):本題考查了直線在平面外的定義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)P(3,3)的圓C與直線x-y+2=0切于點(diǎn)(1,3).
(1)求圓C的方程;
(2)點(diǎn)Q是圓C上任意一點(diǎn),直線x+2y+2=0與兩坐標(biāo)軸的交點(diǎn)分別為A、B,求
QA
QB
的取值范圍;
(3)過點(diǎn)P作兩條直線與圓C分別交于E、F兩點(diǎn),若直線PE與直線PF的傾斜角互補(bǔ),試問:直線EF的斜率是否為定值?若是,求出直線EF的斜率;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x2+ax-1
①若函數(shù)在(-∞,1)是減函數(shù),求a的取值范圍;
②若函數(shù)f(x)是[-1,2]上的單調(diào)函數(shù),求a的范圍;
③若函數(shù)有兩個(gè)零點(diǎn),其中一個(gè)在(-1,1)上,另一個(gè)在(1,2)上,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,A(4,
π
6
),B(3,
3
)
,則A,B兩點(diǎn)距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(1,2,-1),B(2,0,2),在xOy平面內(nèi)的點(diǎn)M到A點(diǎn)與到B點(diǎn)等距離,求M點(diǎn)的軌跡方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以(-1,2)為圓心,
5
為半徑的圓的方程為( 。
A、x2+y2-2x+4y=0
B、x2+y2+2x+4y=0
C、x2+y2+2x-4y=0
D、x2+y2-2x-4y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求圓心在直線y=2x上,且經(jīng)過點(diǎn)(2,-1),與直線x+y=1相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,對(duì)任意的實(shí)數(shù)m,集合A中的點(diǎn)(x,y)都不在直線2mx+(1-m2)y-4m-2=0上,則集合A所對(duì)應(yīng)的平面圖形面積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,點(diǎn)E、F分別是棱AB、BB1的中點(diǎn),則直線EF和BC1的夾角是
 

查看答案和解析>>

同步練習(xí)冊答案