已知實(shí)數(shù)集合A滿足條件:若a∈A,則
1+a
1-a
∈A
,則集合A中所有元素的乘積的值為(  )
分析:由實(shí)數(shù)集合A滿足條件:若a∈A,則
1+a
1-a
∈A
,遞推出集合A中所有元素,可得答案.
解答:解:∵實(shí)數(shù)集合A滿足條件:若a∈A,則
1+a
1-a
∈A
,
1+
1+a
1-a
1-
1+a
1-a
=-
1
a
∈A

1+(-
1
a
)
1-(-
1
a
)
=
a-1
a+1
∈A

1+
a-1
a+1
1-
a-1
a+1
=a∈A

綜上得,集合A={a,-
1
a
,
a-1
a+1
,
1+a
1-a
}
∴a•(-
1
a
)•(
a-1
a+1
)•(
1+a
1-a
)=1
故選A
點(diǎn)評(píng):本題以集合元素的積為載體考查了元素與集合的關(guān)鍵,其中根據(jù)元素屬于集合A則滿足集合A的性質(zhì),遞推出集合所有元素是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A的元素全為實(shí)數(shù),且滿足:若a∈A,則
1+a1-a
∈A.
(1)若a=2,求出A中其他所有元素.
(2)根據(jù)(1),你能得出什么結(jié)論?請(qǐng)證明你的猜想(給出一條即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A的元素全為實(shí)數(shù),且滿足:若a∈A,則∈A.

(1)若a=2,求出A中其他所有元素.

(2)0是不是集合A中的元素?請(qǐng)你設(shè)計(jì)一個(gè)實(shí)數(shù)a∈A,再求出A中的所有元素.

(3)根據(jù)(1)(2),你能得出什么結(jié)論?請(qǐng)證明你的猜想(給出一條即可).

查看答案和解析>>

同步練習(xí)冊(cè)答案