.如右上圖:設(shè)橢圓的左,右兩個(gè)焦點(diǎn)分別為,短軸的上端點(diǎn)為,短軸上的兩個(gè)三等分點(diǎn)為,且為正方形,若過點(diǎn)作此正方形的外接圓的切線在軸上的一個(gè)截距為,則此橢圓方程的方程為    ▲   

 

【答案】

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:廣東省汕頭金山中學(xué)09-10學(xué)年高二下學(xué)期期中考試(理) 題型:填空題

 請(qǐng)閱讀以下材料,然后解決問題:

①設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為a,短半軸長(zhǎng)為b,則橢圓的面積為ab

②我們把由半橢圓C1+=1 (x≤0)與半橢圓C2+=1 (x≥0)合成的曲線稱作“果圓”,其中=+a>0,b>c>0

如右上圖,設(shè)點(diǎn)F0,F1,F2是相應(yīng)橢圓的焦點(diǎn),A1,A2B1,B2是“果圓”與x,y軸的交點(diǎn),若△F0 F1 F2是邊長(zhǎng)為1的等邊三角形,則上述“果圓”的面積為        。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案