(I)當(dāng)a=1時(shí),f(x)=
x 2 +x+lnx,x∈(0,+∞),
所以f′(x)=x+1+
,因此,f′(1)=3,
即曲線y=f(x)在點(diǎn)(1,f(1))處的切線斜率為3,
又f(1)=
,故y=f(x)在點(diǎn)(1,f(1))處的切線方程為y-
=3(x-1),
所以曲線,即3x-y-
=0;
(Ⅱ)因?yàn)?
f /(x)=x+2a-1+=
,x∈(0,+∞),
令g(x)=x
2+(2a-1)x+a
2,x∈(0,+∞),
(1)當(dāng)
a≥時(shí),g(x)≥0在區(qū)間(0,+∞)恒成立,故當(dāng)
a≥時(shí),f′(x)≥0在區(qū)間(0,+∞)恒成立,
所以,當(dāng)
a≥時(shí),f(x)在定義域(0,+∞)上為增函數(shù);
(2)當(dāng)
0<a<時(shí),由g(x)=0,得
x=,
故f(x)=0的兩個(gè)根為
x 1=,
x 2=①由f′(x)<0,得x
1<x<x
2,故函數(shù)的單調(diào)遞減區(qū)間為(x
1,x
2);
②由f′(x)>0,得0<x<x
1,或x>x
2,故函數(shù)的單調(diào)遞增區(qū)間為(0,x
1)和(x
2,+∞);
故當(dāng)
0<a<時(shí),函數(shù)的單調(diào)增區(qū)間為(0,
)和(
,+∞);函數(shù)的單調(diào)遞減區(qū)間為(
,
)
綜上所述:
當(dāng)
a≥時(shí),f(x)在定義域(0,+∞)上為增函數(shù);
當(dāng)
0<a<時(shí),函數(shù)的單調(diào)增區(qū)間為(0,
)和(
,+∞);函數(shù)的單調(diào)遞減區(qū)間為(
,
)