在平面直角坐標系xOy中,已知圓x2+y2=4及點P(1,1),則過點P的直線中,被圓截得的弦長最短時的直線的方程是________.

x+y-2=0
分析:過點P的直線中,被圓截得的弦長最短時,弦心距最大,故當且僅當與OP垂直時,弦長最短,求出直線的斜率,即可得到直線的方程.
解答:過點P的直線中,被圓截得的弦長最短時,弦心距最大,故當且僅當與OP垂直時,弦長最短
∵OP的斜率為1
∴所求直線的斜率為-1
∴所求直線的方程為y-1=-(x-1),即x+y-2=0
故答案為:x+y-2=0
點評:本題考查直線和圓的方程的運用,考查弦長問題,解題的關(guān)鍵是得到過點P的直線中,被圓截得的弦長最短時,弦心距最大.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,雙曲線中心在原點,焦點在y軸上,一條漸近線方程為x-2y=0,則它的離心率為( 。
A、
5
B、
5
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知直線l的參數(shù)方程為
x=2t-1 
y=4-2t .
(參數(shù)t∈R),以直角坐標原點為極點,x軸的正半軸為極軸建立相應(yīng)的極坐標系.在此極坐標系中,若圓C的極坐標方程為ρ=4cosθ,則圓心C到直線l的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(坐標系與參數(shù)方程) 在平面直角坐標系xOy中,圓C的參數(shù)方程為
x=2cosθ
y=2sinθ+2
 (參數(shù)θ∈[0,2π)),若以原點為極點,射線ox為極軸建立極坐標系,則圓C的圓心的極坐標為
 
,圓C的極坐標方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廣東)在平面直角坐標系xOy中,直線3x+4y-5=0與圓x2+y2=4相交于A、B兩點,則弦AB的長等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.
(Ⅰ)若點A的橫坐標是
3
5
,點B的縱坐標是
12
13
,求sin(α+β)的值;
(Ⅱ) 若|AB|=
3
2
,求
OA
OB
的值.

查看答案和解析>>

同步練習冊答案