在平面直角坐標系中,已知橢圓.如圖所示,斜率為且不過原點的直線交橢圓,兩點,線段的中點為,射線交橢圓于點,交直線于點.

(Ⅰ)求的最小值;

(Ⅱ)若,(i)求證:直線過定點;

(ii)試問點能否關于軸對稱?若能,求出此時的外接圓方程;若不能,請說明理由.

 

 

【答案】

 

【解析】(Ⅰ)由題意:設直線,

消y得:,設A、B,AB的中點E,則由韋達定理得: =,即,,所以中點E的坐標為E,因為O、E、D三點在同一直線上,所以,即,解得

,所以=,當且僅當時取等號,即的最小值為2.

(Ⅱ)(i)證明:由題意知:n>0,因為直線OD的方程為,所以由得交點G的縱坐標為,又因為,,且,所以,又由(Ⅰ)知: ,所以解得,所以直線的方程為,即有,令得,y=0,與實數(shù)k無關,所以直線過定點(-1,0).

(ii)假設點,關于軸對稱,則有的外接圓的圓心在x軸上,又在線段AB的中垂線上,

由(i)知點G(,所以點B(,又因為直線過定點(-1,0),所以直線的斜率為,又因為,所以解得或6,又因為,所以舍去,即,此時k=1,m=1,E,AB的中垂線為2x+2y+1=0,圓心坐標為,G(,圓半徑為,圓的方程為.綜上所述, 點,關于軸對稱,此時的外接圓的方程為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,以O為極點,x正半軸為極軸建立極坐標系,曲線C的極坐標方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點,則MN的中點P在平面直角坐標系中的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,如果x與y都是整數(shù),就稱點(x,y)為整點,下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標軸平行又不經(jīng)過任何整點
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點
③直線l經(jīng)過無窮多個整點,當且僅當l經(jīng)過兩個不同的整點
④直線y=kx+b經(jīng)過無窮多個整點的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過一個整點的直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,下列函數(shù)圖象關于原點對稱的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,以點(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點,若AC與BD的交點F恰好為拋物線的焦點,則r=
 

查看答案和解析>>

同步練習冊答案