已知點(diǎn)P(5,0)及圓C:x2+y2-4x-8y-5=0
(1)若直線l1為過(guò)點(diǎn)P的圓C的切線,求直線 l1的方程;
(2)若直線l2為過(guò)點(diǎn)P且被圓C截得的弦AB長(zhǎng)是8,求直線 l2的方程.
分析:(1)根據(jù)題意,可得圓心為C(2,4),半徑r=5.由點(diǎn)P(5,0)在圓C上,可得切線l1與半徑CP互相垂直,因此算出直線CP的斜率為-
4
3
,從而得到切線l1的斜率為
3
4
,可得直線l1的方程;
(2)當(dāng)直線l2的斜率不存在時(shí),利用垂徑定理算出弦AB的長(zhǎng)為8,此時(shí)l2方程為x=5符合題意;當(dāng)直線l2的斜率存在時(shí)設(shè)l2的方程為y=k(x-5),利用點(diǎn)到直線的距離公式和垂徑定理加以計(jì)算,可得k=-
7
24
,得到l2方程為7x+24y-35=0.最后加以綜合即可得到滿足條件的直線l2的方程.
解答:解:(1)∵圓C:x2+y2-4x-8y-5=0化成標(biāo)準(zhǔn)方程,得(x-2)2+(y-4)2=25,
∴圓心為C(2,4),半徑r=5.且P(5,0)在圓C上,
∵直線l1為過(guò)點(diǎn)P的圓C的切線,且P為切點(diǎn),
∴直線CP的斜率為kCP=
4-0
2-5
=-
4
3
,
因此,所求切線l1的斜率為k=
-1
kCP
=
3
4
,
∴直線l1方程為y-0=
3
4
(x-5)
,化簡(jiǎn)得3x-4y-15=0.
(2)①當(dāng)直線l2的斜率不存在時(shí),其方程為x=5,
∵圓心C到x=5距離等于3,
∴弦AB的長(zhǎng)為:|AB|=2
52-32
=8
,滿足題意;
②當(dāng)直線l2的斜率存在時(shí),設(shè)l2方程為y=k(x-5),
∵弦AB長(zhǎng)是8,∴圓心C到直線l2的距離d=
r2-(
1
2
|AB|)2
=3,
∵l2方程為y=k(x-5),即kx-y-5k=0,
|-3k-4|
k2+1
=3
,解之得k=-
7
24
,可得直線l2方程是7x+24y-35=0
綜上所述,可得直線l2方程為7x+24y-35=0或x-5=0.
點(diǎn)評(píng):本題給出已知圓和點(diǎn)P,求經(jīng)過(guò)點(diǎn)P的圓的切線和被圓截得弦長(zhǎng)為8的直線方程.著重考查了圓的標(biāo)準(zhǔn)方程、點(diǎn)到直線的距離公式和直線與圓的位置關(guān)系等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(0,5)及圓C:x2+y2+4x-12y+24=0.
(1)若直線l過(guò)P且與⊙O的圓心相距為2,求l的方程;
(2)求過(guò)P點(diǎn)的⊙C的弦的中點(diǎn)軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(1)選修4-2:矩陣與變換
已知點(diǎn)A(1,0),B(2,2),C(3,0),矩陣M表示變換”順時(shí)針旋轉(zhuǎn)45°”.
(Ⅰ)寫出矩陣M及其逆矩陣M-1;
(Ⅱ)請(qǐng)寫出△ABC在矩陣M-1對(duì)應(yīng)的變換作用下所得△A1B1C1的面積.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
過(guò)P(2,0)作傾斜角為α的直線l與曲線E:
x=cosθ
y=
2
2
sinθ
(θ為參數(shù))交于A,B兩點(diǎn).
(Ⅰ)求曲線E的普通方程及l(fā)的參數(shù)方程;
(Ⅱ)求sinα的取值范圍.
(3)(選修4-5 不等式證明選講)
已知正實(shí)數(shù)a、b、c滿足條件a+b+c=3,
(Ⅰ)求證:
a
+
b
+
c
≤3
;
(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知點(diǎn)A(5,0),點(diǎn)B在直線y=6上運(yùn)動(dòng),點(diǎn)C單位圓x2+y2=1運(yùn)動(dòng),求AB+BC的最小值及對(duì)應(yīng)點(diǎn)B的坐標(biāo).
(2)點(diǎn)P在直線y=6上運(yùn)動(dòng),過(guò)點(diǎn)P作單位圓x2+y2=1的兩切線,設(shè)兩切點(diǎn)為Q和R,求證:直線QR恒過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(0,5)及圓C:x2+y2+4x-12y+24=0,若直線l過(guò)點(diǎn)P且被圓C截得的線段AB長(zhǎng)為4
3

(Ⅰ)求直線l的方程;
(Ⅱ)設(shè)直線l與圓C交于A、B兩點(diǎn),求以線段AB為直徑的圓Q方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案