南方A市欲將一批容易變質(zhì)的水果運往B市,現(xiàn)在可以在飛機、火車和汽車這三種運輸方式中選擇一種,三種運輸方式的參考數(shù)據(jù)如表所示:
運輸工具 途中速度
(千米/時)
 途中費用
(元/千米)
裝卸費用(元)  裝卸時間
(小時)
運輸裝卸損耗費用(元/小時)
 飛機  200  15  1000  2 200
 火車  100  4  2000  4 200
 汽車  50  8  700  3 200
(1)設(shè)A、B兩市之間的距離為x千米,用y1、y2、y3分別表示使用飛機、火車、汽車運輸時的總支出費用(包括損耗),求出y1、y2、y3與小x間的函數(shù)關(guān)系式.
(2)應(yīng)采用哪種運輸方式,才使運輸時的總支出費用最?
考點:簡單線性規(guī)劃的應(yīng)用
專題:應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用每種運輸工具總支出費用=途中所需費用(含裝卸費用)+損耗費用,可得y1、y2、y3與x間的函數(shù)關(guān)系式;
(2)總支出費用隨距離變化而變化,由yl-y2=0,y2一y3=0,先確定自變量的特定值,通過討論選擇最佳運輸方式.
解答: 解:(1)y1=15x+1000+(
x
200
+2)×200=16x+1400,
y2=4x+2000+(
x
100
+4)×200=6x+2800;
y3=8x+700+(
x
50
+3)×200=12x+1300;
(2)由yl-y2=0得x=140,y2一y3=0得x=250,
∴x<250km時采用汽車運輸,x>250km時采用火車運輸,x=250km時采用汽車或火車運輸都可.
點評:本題考查根據(jù)題意列出函數(shù)關(guān)系式,然后根據(jù)x的取值范圍進行討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有五名實習(xí)大學(xué)生分到四個班實習(xí),每班至少分配一名,則不同分法的種數(shù)為(  )
A、45
B、A
 
2
5
A
 
4
4
C、C
 
1
5
A
 
4
4
D、C
 
2
5
A
 
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1所示,一根水平放置的長方體枕木的安全負荷與它的寬度a成正比,與它的厚度d的平方成正比,與它的長度l的平方成反比.
(1)若a>d,將此枕木翻轉(zhuǎn)90°(即寬度變?yōu)榱撕穸龋,枕木的安全負荷會變大嗎?為什么?br />(2)現(xiàn)有一根橫截面為半圓,半徑為
3
的柱形木材,用它截取成橫截面為長方形的枕木(如圖2所示),其長度即為枕木規(guī)定的長度,問如何截取,可使安全負荷最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)an=1+
1
2
+
1
3
+…+
1
n
(n∈N*),是否存在一次函數(shù)g(x),使得a1+a2+a3+…+an-1=g(n)(an-1)對n≥2的一切自然數(shù)都成立,并試用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)英國相關(guān)機構(gòu)判斷,MH370在南印度洋海域消失.中國兩艦艇隨即在邊長為100海里的某正方形ABCD(如圖)海域內(nèi)展開搜索.兩艘搜救船在A處同時出發(fā),沿直線AP、AQ向前聯(lián)合搜索,且∠PAQ=
π
4
(其中點P、Q分別在邊BC、CD上),搜索區(qū)域為平面四邊形APCQ圍成的海平面.設(shè)∠PAB=θ,搜索區(qū)域的面積為S.
(1)試建立S與tanθ的關(guān)系式,并指出θ的取值范圍;
(2)求S的最大值,并求此時tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)滿足:
①f(x+y)=f(x)•f(y)對任何實數(shù)x、y都成立;
②存在實數(shù)x1、x2使,f(x1)≠f(x2).
求證:
(1)f(0)=1;
(2)f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點E在線段PC上,PC⊥平面BDE.
(Ⅰ)證明:BD⊥平面PAC;
(Ⅱ)若PA=1,AD=2,求三棱錐E-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,(2a-c)cosB=bcosC
(Ⅰ)求角B的大;
(Ⅱ)若b=
3
,求a+c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y2=8x與雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0)有公共焦點F2.點A是曲線C1,C2在第一象限的交點,且|AF2|=5.
(1)求雙曲線交點F2及另一交點F1的坐標(biāo)和點A的坐標(biāo);
(2)求雙曲線C2的方程;
(3)以F1為圓心的圓M與直線y=
3
x相切,圓N:(x-2)2+y2=1,過點P(1,
3
)作互相垂直且分別與圓M、圓N相交的直線l1和l2,設(shè)l1被圓M截得的弦長為s,l2被圓N截得的弦長為t,問:
s
t
是否為定值?如果是,請求出這個定值;如果不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案