本小題滿分13分)
已知圓,△ABC內(nèi)接于此圓,A點的坐標(biāo)(3,4),O為坐標(biāo)原點.
(Ⅰ)若△ABC的重心是G(,2),求BC中點D的坐標(biāo)及直線BC的方程;
(Ⅱ)若直線AB與直線AC的傾斜角互補,求證:直線BC的斜率為定值.
(Ⅰ) x+y-2=0.  (Ⅱ)

試題分析:(1)要求三角形頂點的坐標(biāo),可先將它們的坐標(biāo)設(shè)出來,根據(jù)重心的性質(zhì),我們不難求出BC邊上中點D的坐標(biāo),及BC所在直線的斜率,代入直線的點斜式方程即可求出答案.
(2)若直線AB與直線AC的傾斜角互補,則他們的斜率互為相反數(shù),又由他們都經(jīng)過A點,則可以設(shè)出他們的點斜式方程,代入圓方程后,求出BC兩點的坐標(biāo),代入斜率公式,即可求證出正確的結(jié)論。
解:(Ⅰ)設(shè)B(x1,y1),C(x2,y2) 由題意可得:
 
,  ∴ BC中點的坐標(biāo)為(1,1),
又B、C在已知圓上 ,故有:
   
相減得:

∴直線BC的方程為y-1=-(x-1),即x+y-2=0. …………………………6分
(Ⅱ)設(shè)AB:y=k(x-3)+4,代入圓的方程整理得:

∵3,x1是上述方程的兩根

同理可得:

.       ……………13
點評:解決該試題的關(guān)鍵是根據(jù)三角形重心的坐標(biāo)是三角形三個頂點坐標(biāo)的平均數(shù),由重心坐標(biāo)及任意兩頂點的坐標(biāo),構(gòu)造方程易求第三個頂點的坐標(biāo);已知三個頂點的坐標(biāo),代入重心坐標(biāo)公式,即得重心坐標(biāo);如果已知重心坐標(biāo)和其中一個頂點的坐標(biāo),則我們只能求出該頂點對邊上中點的坐標(biāo).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共13分)已知圓過兩點(1,-1),(-1,1),且圓心上.
(1)求圓的方程;
(2)設(shè)是直線上的動點,、是圓的兩條切線,、為切點,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若方程 表示一個圓,則有(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

圓C:x2+y2+2x+4y-3=0上到直線:x+y+1=0的距離為的點共有(  )
A.1個    B.2個    C.3個 D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

圓x2+y2-2x-2y+1=0上的動點Q到直線3x+4y+8=0距離的最小值為      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過圓內(nèi)點作圓的兩條互相垂直的弦,則的最大值為                            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是圓內(nèi)一點,過被圓截得的弦最短的直線方程是(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個圓的圓心在直線上,與直線相切,在
上截得弦長為6,求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知一圓的圓心為點,一條直徑的兩個端點分別在軸和軸上,則此圓的方
程是(    )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案