19.若函數(shù)f(x)=2x+x-5的零點在區(qū)間(a,b)(a,b是整數(shù)且b-a=1)內,則a+b=3.

分析 先分析函數(shù)單調性,由函數(shù)零點的存在性定理可以判斷f(1)f(2)<0,由此可知函數(shù)零點在區(qū)間(1,2)內,得解.

解答 解:∵f′(x)=ln2•2x+1>0,
∴函數(shù)在R上單調,
又因為f(1)f(2)=(-3)×1<0,
∴函數(shù)有唯一零點,且零點在區(qū)間(2,3)內,
由題意可知a=1,b=2,
故a+b=3.
故答案為:3.

點評 本題考查函數(shù)零點的存在性定理.掌握零點存在性定理并能運用是解題關鍵.屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.若橢圓x2+my2=1的離心率為$\frac{\sqrt{3}}{2}$,則m為(  )
A.4B.$\frac{1}{4}$C.3D.4 或$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某校舉辦2010年上海世博會知識競賽,從參賽的高一、高二學生中各抽100人的成績作為樣本,其結果如右表:
(1)求m,n的值;
(2)在犯錯誤的概率不超過多少的前提下認為“高一、高二兩個年級這次世博會知識競賽的成績有差異.參考數(shù)據(jù):
(參考公式:k=$\frac{n(ab-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)
高一高二合計
合格人數(shù)80m140
不合格人數(shù)n4060
合計100100200
P(K2≥k00.0250.0100.0050.001
k05.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若集合M={x∈N|2x-1>0},P={x∈N|x≤2},則M∩P={1,2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知雙曲線C:$\frac{y^2}{a^2}-\frac{x^2}{b^2}$=1(a>0,b>0)的離心率為$\frac{5}{3}$,則雙曲線C的漸近線方程為( 。
A.$y=±\frac{3}{4}x$B.$y=±\frac{4}{3}x$C.$y=±\frac{{\sqrt{6}}}{3}x$D.$y=±\frac{{\sqrt{6}}}{2}x$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知盒中裝有3個紅球,2個白球,5個黑球,它們除顏色外完全相同,小明需要一個紅球,若他每次從中任取一個球且取出的球不再放回,則他在第一次拿到白球的條件下,第二次拿到紅球的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知x,y∈R+,且滿足$\frac{x}{2}+\frac{y}{3}=1$,則xy的最大值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如圖,在以BC為直徑的半圓上任意取一點P,過$\widehat{BP}$的中點A作AD⊥BC于D,連接BP交AD于E,交AC于F,則EF:BE等于( 。
A.1:2B.1:1C.2:1D.2:3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在直角坐標系xOy中,以原點為O極點,以x軸正半軸為極軸,圓C的極坐標方程為$ρ=4\sqrt{2}sin(\frac{3π}{4}-θ)$
(1)將圓C的極坐標方程化為直角坐標方程;
(2)過點P(0,2)作斜率為$\sqrt{3}$直線l與圓C交于A,B兩點,試求$|{\frac{1}{|PA|}-\frac{1}{|PB|}}|$的值.

查看答案和解析>>

同步練習冊答案