【題目】已知四棱錐P﹣ABCD的底面為矩形,PA⊥平面ABCD,PA=AB=2,AD=1,點(diǎn)M為PC中點(diǎn),過A、M的平面α與此四棱錐的面相交,交線圍成一個四邊形,且平面α⊥平面PBC.
(1)在圖中畫出這個四邊形(不必說出畫法和理由);
(2)求平面α與平面ABM所成銳二面角的余弦值.
【答案】
(1)解:取PB中點(diǎn)N,連接AN,DM,MN,
則MN∥AD,MN與AD確定平面α
(2)解:分別以AD、AB、AP所在直線為x、y、z軸建立如圖直角坐標(biāo)系,
∵PA=AB=2,AD=1,點(diǎn)M為PC中點(diǎn),N為PB中點(diǎn),
∴ ,
, ,
設(shè)平面AMB的法向量 ,
則由 ,取x=2,得 .
平面α的法向量 ,
∴平面α與平面AMB所成二面角的余弦值 .
【解析】(1)取PB中點(diǎn)N,連接AN,DM,MN,則MN∥AD,由公理2的推論可得平面α;(2)分別以AD、AB、AP所在直線為x、y、z軸建立如圖直角坐標(biāo)系,由已知求得所用點(diǎn)的坐標(biāo),進(jìn)一步求得平面α與平面ABM的法向量,由法向量所成角的余弦值可得平面α與平面ABM所成銳二面角的余弦值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1:y=cosx,C2:y=sin(2x+),則下面結(jié)論正確的是( 。
A. 把C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2
B. 把C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2
C. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2
D. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A,B,C,D在同一個球的球面上,AB=BC=2,AC=2 ,若四面體ABCD體積的最大值為 ,則該球的表面積為( )
A.
B.8π
C.9π
D.12π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬;將四個面都為直角三角形的三棱錐稱之為鱉臑.若三棱錐為鱉臑, 平面, , ,三棱錐的四個頂點(diǎn)都在球的球面上,則球的表面積為( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若c= ,△ABC的面積為 ,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4;坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)中,曲線.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程.
(Ⅱ)求曲線上的點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南宋數(shù)學(xué)家秦九韶所著《數(shù)學(xué)九章》中有“米谷粒分”問題:糧倉開倉收糧,糧農(nóng)送來米1512石,驗(yàn)得米內(nèi)夾谷,抽樣取米一把,數(shù)得216粒內(nèi)夾谷27粒,則這批米內(nèi)夾谷約( )
A.164石
B.178石
C.189石
D.196石
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線: (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為.
(1)分別求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)設(shè)直線交曲線于, 兩點(diǎn),交曲線于, 兩點(diǎn),求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心為C的圓過點(diǎn)A(0,﹣6)和B(1,﹣5),且圓心在直線l:x﹣y+1=0上.
(1)求圓心為C的圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)M(2,8)作圓的切線,求切線方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com