已知函數(shù)f(x)=lg(1-
2x
1+x
),若f(m)=
8
7
,則f(-m)等于( 。
A.
8
7
B.-
8
7
C.
7
8
D.-
7
8
∵f(x)=lg(1-
2x
1+x
)=lg(
1-x
1+x
),
∴f(-x)=lg(
1+x
1-x
)=-lg(
1-x
1+x
)=-f(x),
故函數(shù)f(x)是奇函數(shù),
∵f(m)=
8
7
,
∴f(-m)=-
8
7

故選B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)a是正數(shù),ax+y=2(x≥0,y≥0),記y+3x-
1
2
x2的最大值是M(a),試求:
(1)M(a)的表達(dá)式;(2)M(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知f(x)是定義在[-1,1]上的減函數(shù),f(x-1)<f(2x-3),則x的取值范圍______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一次函數(shù)f(x)=kx+b的圖象與反比例函數(shù)g(x)=
m
x
的圖象都經(jīng)過點A(-2,6)和點B(4,n).
(1)求這兩個函數(shù)的解析式;
(2)求函數(shù)g(x)=g(x)=
m
x
在[1,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=3-2|x|,g(x)=x2-2x,構(gòu)造函數(shù)y=F(x),定義如下:當(dāng)f(x)≥g(x)時,F(xiàn)(x)=g(x);當(dāng)f(x)<g(x)時,F(xiàn)(x)=f(x),那么F(x)( 。
A.有最大值3,最小值-1
B.有最大值7-2
7
,無最小值
C.有最大值3,無最小值
D.無最大值,也無最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)f(x)=loga(x2-ax+3)在區(qū)間(-∞,
a
2
)上是減函數(shù),則a的取值范圍是( 。
A.(0,1)B.(1,+∞)C.(1,2
3
]
D.(1,2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列區(qū)間中,函數(shù)f(x)=|ln(2-x)|在其上為增函數(shù)的是( 。
A.(-∞,1]B.[-1,
4
3
]
C.[0,
3
2
D.[1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù),的定義域都為R,且是奇函數(shù),是偶函數(shù),則下列結(jié)論正確的是( ).
A.是偶函數(shù)B.||是奇函數(shù)
C.||是奇函數(shù)D.||是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=log2x,f(
1
4
)
等于( 。
A.-1B.-2C.2D.3

查看答案和解析>>

同步練習(xí)冊答案