分析 (Ⅰ)設“前兩個乒乓球所標數(shù)字之和為偶數(shù)”為事件A,“第三個乒乓球為奇數(shù)”為事件B,由此利用條件概率計算公式能求出前兩個乒乓球所標數(shù)字之和為偶數(shù)的條件下,第三個乒乓球為奇數(shù)的概率.
(Ⅱ)ξ的可能取值為1,2,3,4.分別求出相應的概率,由此能求出隨機變量ξ的分布列及數(shù)學期望.
解答 解:(Ⅰ)設“前兩個乒乓球所標數(shù)字之和為偶數(shù)”為事件A,
“第三個乒乓球為奇數(shù)”為事件B,
則所求概率為$P(B\left|A\right.)=\frac{P(A•B)}{P(A)}=\frac{C_3^1A_2^2+A_2^2A_3^1}{C_4^1A_2^2A_3^1}=\frac{1}{2}$.
(Ⅱ)ξ的可能取值為1,2,3,4.
$P(ξ=1)=\frac{A_2^1}{A_5^1}=\frac{2}{5},P(ξ=2)=\frac{A_3^1A_2^1}{A_5^2}=\frac{3}{10},P(ξ=3)=\frac{A_3^2A_2^1}{A_5^3}=\frac{1}{5},P(ξ=4)=\frac{A_3^3A_2^1}{A_5^4}=\frac{1}{10}$,
ξ的分布列為
ξ | 1 | 2 | 3 | 4 |
P | $\frac{2}{5}$ | $\frac{3}{10}$ | $\frac{1}{5}$ | $\frac{1}{10}$ |
點評 本題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學期望的求法,是中檔題,解題時要認真審題,注意排列組合知識的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
x | -2 | 2 | $\sqrt{6}$ | 9 |
y | $\sqrt{2}$ | -$\sqrt{2}$ | -1 | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2+$\sqrt{2}$ | B. | 2-$\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,2] | B. | [1,2] | C. | [-2,0] | D. | [-2,-1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com