4.P到$(0,\sqrt{3}),(0,-\sqrt{3})$距離之和為4,設(shè)點(diǎn)P的軌跡為C,直線y=kx+1與C交于AB
(Ⅰ)求C的方程        
(Ⅱ)若$\overrightarrow{OA}⊥\overrightarrow{OB}$,求k.

分析 (Ⅰ)設(shè)P(x,y),由橢圓定義可知其軌跡為橢圓;
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),聯(lián)立化為(k2+4)x2+2kx-3=0.由$\overrightarrow{OA}⊥\overrightarrow{OB}$,可得x1x2+y1y2=0.把根與系數(shù)的關(guān)系代入即可得出.

解答 解:(Ⅰ)設(shè)P(x,y),由橢圓定義可知,點(diǎn)P的軌跡C是以$(0,-\sqrt{3}),(0,\sqrt{3})$為焦點(diǎn),長(zhǎng)半軸為2的橢圓.
它的短半軸$b=\sqrt{{2^2}-{{(\sqrt{3})}^2}}=1$,
故曲線C的方程為${x^2}+\frac{y^2}{4}=1$.
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),其坐標(biāo)滿足$\left\{\begin{array}{l}{x^2}+\frac{y^2}{4}=1\\ y=kx+1.\end{array}\right.$
消去y并整理得(k2+4)x2+2kx-3=0,
故${x_1}+{x_2}=-\frac{2k}{{{k^2}+4}},{x_1}{x_2}=-\frac{3}{{{k^2}+4}}$
若$\overrightarrow{OA}⊥\overrightarrow{OB}$,即x1x2+y1y2=0.
而${y_1}{y_2}={k^2}{x_1}{x_2}+k({x_1}+{x_2})+1$,
于是${x_1}{x_2}+{y_1}{y_2}=-\frac{3}{{{k^2}+4}}-\frac{{3{k^2}}}{{{k^2}+4}}-\frac{{2{k^2}}}{{{k^2}+4}}+1=0$,化簡(jiǎn)得-4k2+1=0,
解得$k=±\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了向量垂直與數(shù)量積的關(guān)系、橢圓的定義及其標(biāo)準(zhǔn)方程、直線與橢圓相交問(wèn)題、一元二次的根與系數(shù)的關(guān)系,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.寫出與α=-1910°終邊相同的角的集合,并把集合中適合不等式-720°≤β<360°的元素β寫出來(lái).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)A(-3,0),B(3,0)為兩定點(diǎn),動(dòng)點(diǎn)P到A點(diǎn)的距離與到B點(diǎn)的距離之比為1:2,則點(diǎn)P的軌跡圖形所圍成的面積是16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)=3x3+ax+1(a為常數(shù))f(5)=7,則f(-5)=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右頂點(diǎn)分別為A(-2,0),B(2,0),離心率e=$\frac{\sqrt{3}}{2}$.
(1)求橢圓M的方程;
(2)若F1,F(xiàn)2是橢圓M的左,右焦點(diǎn),以線段F1F2為直徑作圓N,點(diǎn)C(C點(diǎn)不同于F1,F(xiàn)2,且不在y軸上)為圓N上任一點(diǎn),直線F1C與直線x=$\sqrt{3}$交于點(diǎn)R,D為線段RF2的中點(diǎn),試判斷直線CD與圓N的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.己知函數(shù)f(x)=$\left\{\begin{array}{l}{2x+2,-1≤k<0}\\{-x+2,0≤x<2}\end{array}\right.$,則不等式f(x)≥log2(x+1)的解集是{x|-1<x≤1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,已知四棱錐S-ABCD的側(cè)棱與底面邊長(zhǎng)都是2,且底面ABCD是正方形,則側(cè)棱與底面所成的角( 。
A.75°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.集合A={x|x2-3x-10≤0},集合B={x|m+1≤x≤2m-1}.
(1)若B⊆A,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x∈R時(shí),沒(méi)有元素x使x∈A與x∈B同時(shí)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,其中左焦點(diǎn)F(-2,0).
(1)求橢圓C的方程;
(2)若直線y=x+m與橢圓C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)M關(guān)于直線y=x+1的對(duì)稱點(diǎn)在圓x2+y2=1上,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案