16.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\sqrt{2}cosθ}\\{y=1+\sqrt{2}sinθ}\end{array}\right.$,以坐標(biāo)原點為極點,以x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)+$\sqrt{2}$=0.
(1)求曲線C1的極坐標(biāo)方程以及曲線C2的直角坐標(biāo)方程;
(2)求曲線C1上的點到曲線C2的距離的取值范圍.

分析 (1)利用三種方程的互化方法求曲線C1的極坐標(biāo)方程以及曲線C2的直角坐標(biāo)方程;
(2)求出圓C1的圓心到直線C2的距離d0=$\frac{|1+1+2|}{\sqrt{2}}$=2$\sqrt{2}$,即可求曲線C1上的點到曲線C2的距離的取值范圍.

解答 解:(1)曲線C1化為普通方程為(x-1)2+(y-1)2=2
展開后得x2-2x+y2-2y=0
再由x=ρcosθ,y=ρsinθ代入得極坐標(biāo)方程為ρ=2sinθ+2cosθ…(2分)
曲線C2展開得$\frac{\sqrt{2}}{2}$ρsinθ+$\frac{\sqrt{2}}{2}$ρcosθ+$\sqrt{2}$=0,
又x=x=ρcosθ,y=ρsinθ,得直角坐標(biāo)方程為x+y+2=0…(5分)
(2)由(1)知曲線C1的直角坐標(biāo)方程為(x-1)2+(y-1)2=2,是以(1,1)為圓心,1為半徑的圓,曲線C2是一條直線
圓C1的圓心到直線C2的距離d0=$\frac{|1+1+2|}{\sqrt{2}}$=2$\sqrt{2}$…(8分)
故曲線C1上的點到C1的距離d的取值范圍是[$\sqrt{2}$,3$\sqrt{2}$]…(10分)

點評 本題考查了極坐標(biāo)與直角坐標(biāo)方程的互化、參數(shù)方程化為普通方程、點到直線的距離公式公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=-x2+|x|的遞減區(qū)間是[-$\frac{1}{2}$,0]和[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)焦點在y軸上的雙曲線漸近線方程為$y=±\frac{{\sqrt{3}}}{3}x$,且c=2,已知點A($1,\frac{1}{2}$)
(Ⅰ)求雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)過點A的直線L交雙曲線于M,N兩點,點A為線段MN的中點,求直線L方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.對定義在[1,+∞)上的函數(shù)f(x)和常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“凱森數(shù)對”.
(1)若(1,1)是f(x)的一個“凱森數(shù)對”,且f(1)=3,求f(16);
(2)已知函數(shù)f1(x)=log3x與f2(x)=2x的定義域都為[1,+∞),問它們是否存在“凱森數(shù)對”?分別給出判斷并說明理由;
(3)若(2,0)是f(x)的一個“凱森數(shù)對”,且當(dāng)1<x≤2時,f(x)=$\sqrt{2x-{x^2}}$,求f(x)在區(qū)間(1,+∞)上的不動點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)$f(x)={log_5}({6^x}+1)$的值域為( 。
A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)是定義域為R的偶函數(shù),對任意的非負(fù)實數(shù)x,有f(x+2)=2f(x),當(dāng)x∈[0,2)時,f(x)=$\left\{\begin{array}{l}{x^2}-2x\;,\;\;x∈[{0\;,\;\;1})\\-{2^x}\;,\;\;x∈[{1\;,\;\;2})\end{array}$,若x∈[-2,0]時,f(x)的值域是( 。
A.[-4,0]B.[-4,-2]∪[-1,0]C.(-4,0]D.(-4,-2]∪(-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知二次函數(shù)f(x)同時滿足;①f(x+1)-f(x)=2x;②x∈R,恒有f(x)≥x2-x+1成立;③當(dāng)x≥0時,f(x)≤2x
(1)求f(x)的解析式;
(2)當(dāng)x∈[-1,1]時,不等式f(x)>2x+m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知雙曲線$\frac{x^2}{4}-\frac{y^2}{12}=1$的離心率為e,拋物線x=2py2的焦點為(e,0),則實數(shù)p的值為$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)a,b,c∈R,則下列命題為真命題的是( 。
A.a>b⇒a-c>b-cB.a>b⇒ac>bcC.a>b⇒a2>b2D.a>b⇒ac2>bc2

查看答案和解析>>

同步練習(xí)冊答案