18.求下列函數(shù)的反函數(shù):
(1)y=1+log2(x-1)
(2)y=x2-1(-1≤x≤0)

分析 (1)(2)利用方程的解法,用y表示x,求出其范圍,再把x與y互換即可得出.

解答 解:(1)由y=1+log2(x-1),化為:x-1=2y-1,即x=1+2y-1,把x與y互換可得反函數(shù):y=1+2x-1,(y>1).
(2)y=x2-1,-1≤x≤0,可得y∈[-1,0],解得$x=-\sqrt{y+1}$.把x與y互換可得反函數(shù)為:y=-$\sqrt{x+1}$,x∈[-1,0],

點(diǎn)評(píng) 本題考查了反函數(shù)的求法、函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=2f′(1)lnx-x,則f′(1)的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知冪函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(2,$\frac{1}{4}$),則f($\frac{1}{2}$)的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=ax2+bx+c,x∈[-2a-5,1]是偶函數(shù),則a+b=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),$f(x)={2^x}-{x^{\frac{1}{3}}}$,求當(dāng)x>0時(shí)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知$\overrightarrow a$=(1,0),$\overrightarrow b$=(1,1),若$\overrightarrow a$+λ$\overrightarrow b$與$\overrightarrow a$垂直,則λ=( 。
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.$\overrightarrow a=(x,4,3),\overrightarrow b=(3,2,z)$,若$\overrightarrow a$∥$\overrightarrow b$,則x•z=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知y=f(x)是定義在R上的偶函數(shù),且在[0,+∞)上單調(diào)遞增,則滿足條件f(m)<f(3)的實(shí)數(shù)m的范圍是(-3,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.2011年9月1日起,我國(guó)實(shí)行新個(gè)人所得稅率,起征點(diǎn)為3500元,超過(guò)部分實(shí)行超額累進(jìn)稅率.如果月工資20000元,則應(yīng)交稅為3120元.
應(yīng)納銳收入(元)稅率(%)
不超過(guò)1500元3
超過(guò)1500元至4500元10
超過(guò)4500元至9000元20
超過(guò)9000元至35000元25

查看答案和解析>>

同步練習(xí)冊(cè)答案