已知函數(shù)f(x)=數(shù)學(xué)公式,若f(f(x0))=4,則x0的值等于


  1. A.
    -5或1
  2. B.
    -1
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式或1
D
分析:先討論x0的取值范圍,若x0≥0,f(x0)=x02≥0,f(f(x0))=x04,若x0<0,f(x0)=x0+3,再討論x0+3的范圍,求出f(x0+3)
解答:若x0≥0,f(f(x0))=f(x02)=x04=4,∴
若x0<0,f(f(x0))=f(x0+3)
當-3<x0<0,x0+3>0,f(x0+3)=(x0+3)2=4,可得x0=-1
當x0<-3,x0+3<0,f(x0+3)=x0+6=4,∴x0=-2(舍)
綜上可得出:
故選D.
點評:本題主要考查分段函數(shù)值的求解,利用分類討論分別代入求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案