如圖所示,已知AB為圓O的直徑,點(diǎn)D為線段AB上一點(diǎn),且,點(diǎn)C為圓O上一點(diǎn),且.點(diǎn)P在圓O所在平面上的正投影為點(diǎn)D,PD=DB.
(1)求證:;
(2)求二面角的余弦值.
(1)證明見解析;(2).
解析試題分析:(1)先利用平面幾何知識與線面垂直的性質(zhì)證線線垂直,由線線垂直得到線面垂直,再由線面垂直得到線線垂直;(2)作出二面角的平面角,證明符合二面角的定義,再在三角形中求二面角的平面角,從而求出所求的二面角.
試題解析:(1)如圖,連接,
由知,點(diǎn)為的中點(diǎn),
又∵為圓的直徑,
∴,
由知,,
∴為等邊三角形,從而.
∵點(diǎn)在圓所在平面上的正投影為點(diǎn),
∴平面,又平面,
∴,
由得,平面,
又平面,
∴.
(2)方法1:(綜合法)如圖,過點(diǎn)作,垂足為,連接,
由(1)知平面,
又∵平面,
∴,
又∵,
∴平面,
又∵平面,
∴,
∴為二面角的平面角.
由(Ⅰ)可知,,
∴,則,
∴在中,,
∴,即二面角的余弦值為.
方法2:(坐標(biāo)法)以為原點(diǎn),、和的方向分別為軸、軸和軸的正向,建立如圖所示的空間直角坐標(biāo)系,
設(shè),由,得,,,
∴,,,,
∴,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,已知的直徑,點(diǎn)、為上兩點(diǎn),且,,為弧的中點(diǎn).將沿直徑折起,使兩個半圓所在平面互相垂直(如圖2).
(Ⅰ)求證:;
(Ⅱ)在弧上是否存在點(diǎn),使得平面?若存在,試指出點(diǎn)的位置;若不存在,請說明理由;
(Ⅲ)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知三棱柱的側(cè)棱長和底面邊長均為2,在底面ABC內(nèi)的射影O為底面△ABC的中心,如圖所示:
(1)聯(lián)結(jié),求異面直線與所成角的大;
(2)聯(lián)結(jié)、,求三棱錐C1-BCA1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,側(cè)棱AA1⊥面ABC,D、E分別是棱A1B1、AA1的中點(diǎn),點(diǎn)F在棱AB上,且.
(Ⅰ)求證:EF∥平面BDC1;
(Ⅱ)求二面角E-BC1-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在四棱錐中,底面四邊形是菱形,,是邊長為2的等邊三角形,,.
(Ⅰ)求證:底面;
(Ⅱ)求直線與平面所成角的大;
(Ⅲ)在線段上是否存在一點(diǎn),使得∥平面?如果存在,求的值,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,五面體中,四邊形ABCD是矩形,DA面ABEF,且DA=1,AB//EF,,P、Q、M分別為AE、BD、EF的中點(diǎn).
(1)求證:PQ//平面BCE;
(2)求證:AM平面ADF;
(3)求二面角A-DF-E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P—ABCD中,ABCD為平行四邊形,且BC⊥平面PAB,PA⊥AB,M為PB的中點(diǎn),PA=AD=2.
(Ⅰ)求證:PD//平面AMC;
(Ⅱ)若AB=1,求二面角B—AC—M的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐S-ABCD中,底面ABCD是矩形,SA底面ABCD,SA=AD,點(diǎn)M是SD的中點(diǎn),ANSC且交SC于點(diǎn)N.
(Ⅰ)求證:SB∥平面ACM;
(Ⅱ)求證:平面SAC平面AMN.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知四棱錐,底面是平行四邊形,點(diǎn)在平面上的射影在邊上,且,.
(Ⅰ)設(shè)是的中點(diǎn),求異面直線與所成角的余弦值;
(Ⅱ)設(shè)點(diǎn)在棱上,且.求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com