已知函數(shù)f(x)=log3(ax2+2x+3),a∈R.
(1)若f(x)的定義域為R,求實數(shù)a的取值范圍;
(2)若f(x)的值域為R,求實數(shù)a的取值范圍.
考點(diǎn):對數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)對數(shù)函數(shù)的定義,真數(shù)大于0,即可求出m的范圍.
(2)f(x)的值域為R,也可以說y=ax2+2x+3取遍一切正數(shù),問題得以解決.
解答: 解:(1)由f(x)的定義域為R,則ax2+2x+3>0恒成立,…(1分)
若a=0時,2x+3>0,x>-
3
2
,不合題意; …(3分)
所以a≠0;
a>0
△=22-4•a•3<0
得:a>
1
3
.…(6分)
(2)由f(x)的值域為R,所以{y|y=ax2+2x+3,x∈R}?(0,+∞),…(7分)
(也可以說y=ax2+2x+3取遍一切正數(shù))
①若a=0時,y=2x+3可以取遍一切正數(shù),符合題意,…(9分)
②若a≠0時,需
a>0
△=22-4•a•3≥0
,即0<a≤
1
3
; …(12分)
綜上,實數(shù)a的取值范圍為(0,
1
3
].…(13分)
點(diǎn)評:本題主要考查了對數(shù)函數(shù)的定義和二次函數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列各圖中,不能表示函數(shù)y=f(x)的圖象的是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos
x
2
3
cos
x
2
-sin
x
2
).
(Ⅰ)設(shè)x∈[-
π
2
,
π
2
],求f(x)的值域;
(Ⅱ)在△ABC中,角A,B,C所對的邊分別為a,b,c.已知c=1,f(C)=
3
+1,且△ABC的面積為
3
2
,求邊a和b的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinxcosx-1(x∈R),給出下列四個命題( 。
①若f(x1)=-f(x2),則x1=-x2;
②f(x)的最小正周期是2π;
③f(x)在區(qū)間[-
π
4
,
π
4
]上是增函數(shù);
④f(x)的圖象關(guān)于直線x=
4
對稱,
其中正確的命題是(  )
A、①②④B、①③C、②③D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=cos 2x-1,g(x)=f(x+m)+n,則使g(x)為奇函數(shù)的實數(shù)m,n的可能取值為( 。
A、m=
π
2
,n=-1
B、m=
π
2
,n=1
C、m=-
π
4
,n=-1
D、m=-
π
4
,n=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+a(x+lnx),x>0,a∈R是常數(shù).
(1)求函數(shù)y=f(x)的圖象在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)y=f(x)圖象上的點(diǎn)都在第一象限,試求常數(shù)a的取值范圍;
(3)證明:?a∈R,存在ξ∈(1,e),使f′(ξ)=
f(e)-f(1)
e-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinθ,-
5
5
)與
b
=(1,cosθ)
(Ⅰ)若
a
b
互相垂直,求tanθ的值
(Ⅱ)若|
a
|=|
b
|,求sin(
π
2
+2θ)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
x+2,-5≤x<0
x2-1,0≤x<2
,若f(a)=0,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列圖形是函數(shù)y=
x2,x<0
x-1,x≥0
,的圖象的是
 

查看答案和解析>>

同步練習(xí)冊答案