已知函數(shù),其中.
(1)當(dāng)時(shí),求函數(shù)的圖象在點(diǎn)處的切線(xiàn)方程;
(2)如果對(duì)于任意、,且,都有,求的取值范圍.
(1);(2).
解析試題分析:(1)將代入函數(shù)的解析式,求出切點(diǎn)坐標(biāo)與,再利用點(diǎn)斜式寫(xiě)出相應(yīng)的切線(xiàn)方程;(2)將問(wèn)題等價(jià)于在上單調(diào)遞增來(lái)處理,然后分別考慮函數(shù)和
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知曲線(xiàn) y = x3 + x-2 在點(diǎn) P0 處的切線(xiàn) 平行于直線(xiàn)
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù),其中a為常數(shù).
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù).
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù),.
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)在上是減函數(shù),在上是增函數(shù),函數(shù)在上有三個(gè)零點(diǎn),且是其中一個(gè)零點(diǎn).
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
在區(qū)間上給定曲線(xiàn),試在此區(qū)間內(nèi)確定點(diǎn)的值,使圖中所給陰影部分的面積與之和最。
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
設(shè).
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)處取得極值2
百度致信 - 練習(xí)冊(cè)列表 - 試題列表 湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
的單調(diào)性與極值,利用兩個(gè)函數(shù)的圖象確定直線(xiàn)的位置,利用來(lái)進(jìn)行限制,從而求解出實(shí)數(shù)的取值范圍.
試題解析:(1)由題意,得,其中,
所以,
又因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/d0/b/2ec4v.png" style="vertical-align:middle;" />,
所以函數(shù)的圖象在點(diǎn)處的切線(xiàn)方程為;
(2)先考察函數(shù),的圖象,
配方得,
所以函數(shù)在上單調(diào)遞增,在單調(diào)遞減,且.
因?yàn)閷?duì)于任意、,且,都有成立,
所以.
以下考察函數(shù),的圖象,
則,
令,解得.
隨著變化時(shí),和的變化情況如下:↘
年級(jí)
高中課程
年級(jí)
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
4x-y-1=0,且點(diǎn) P0 在第三象限,
⑴求P0的坐標(biāo);
⑵若直線(xiàn) , 且 l 也過(guò)切點(diǎn)P0 ,求直線(xiàn)l的方程.
(1)當(dāng)時(shí),求的最大值;
(2)若在區(qū)間(0,e]上的最大值為,求a的值;
(3)當(dāng)時(shí),試推斷方程=是否有實(shí)數(shù)解.
(1)若曲線(xiàn)在點(diǎn)處的切線(xiàn)與直線(xiàn)平行,求實(shí)數(shù)的值;
(2)若函數(shù)在處取得極小值,且,求實(shí)數(shù)的取值范圍.
(1)若曲線(xiàn)在點(diǎn)處的切線(xiàn)平行于軸,求的值;
(2)當(dāng)時(shí),若對(duì),恒成立,求實(shí)數(shù)的取值范圍;
(3)設(shè),在(1)的條件下,證明當(dāng)時(shí),對(duì)任意兩個(gè)不相等的正數(shù)、,有.
(1)求的值;
(2)求的取值范圍;
(3)設(shè),且的解集為,求實(shí)數(shù)的取值范圍.
(1)當(dāng)取到極值,求的值;
(2)當(dāng)滿(mǎn)足什么條件時(shí),在區(qū)間上有單調(diào)遞增的區(qū)間.
(1)求函數(shù)的表達(dá)式;
(2)當(dāng)滿(mǎn)足什么條件時(shí),函數(shù)在區(qū)間上單調(diào)遞增?
(3)若為圖象上任意一點(diǎn),直線(xiàn)與的圖象相切于點(diǎn)P,求直線(xiàn)的斜率的取值范圍
版權(quán)聲明:本站所有文章,圖片來(lái)源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無(wú)意侵犯版權(quán),如有侵權(quán),請(qǐng)作者速來(lái)函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號(hào): 滬ICP備07509807號(hào)-10 鄂公網(wǎng)安備42018502000812號(hào)