若a2+b2=1,x2+y2=1,求ax+by的最小值.
考點:二維形式的柯西不等式
專題:計算題,不等式的解法及應(yīng)用
分析:根據(jù)柯西不等式可知(a2+b2)(x2+y2)≥(ax+by)2,進而求得ax+by的最小值.
解答: 解:因為a2+b2=1,x2+y2=1,
由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得1≥(ax+by)2,
所以ax+by的最小值為-1.
點評:本題主要考查了柯西不等式在最值問題中的應(yīng)用.解題的關(guān)鍵是利用了柯西不等式,達到解決問題的目的.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知球O的直徑為4,P,A,B,C為球面上四個點,P-ABC為正三棱錐,PA,PB,PC與平面ABC所成角均為60°則棱錐P-ABC體積為( 。
A、
3
3
4
B、
9
3
4
C、
3
3
2
D、
27
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面向量
a
=(
3
2
,-
1
2
),
b
=(
1
2
,
3
2
)若存在不同時為零的兩個實數(shù)s、t及實數(shù)k,使
x
=
a
+(t2-k)
b
y
=-s
a
+t
b
,且
x
y

(1)求函數(shù)關(guān)系式S=f(t);
(2)若函數(shù)S=f(t)在[1,+∞]上是單調(diào)函數(shù),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
5
+
y2
4
=1,過右焦點F2的直線l交橢圓于A、B兩點,若|AB|=
4
5
9
,求直線l的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3+ax2的圖象為曲線C,M,N是曲線C上的不同點,曲線C在M,N處的切線斜率均為k.
(1)若a=3,函數(shù)g(x)=
f(x)
x
的圖象在點x1,x2處的切線互相垂直,求|x1-x2|的最小值;
(2)若MN的方程為x+y+1=0,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y,z滿足x2+y2+z2=1,則xy+yz+zx的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
1
x
,g(x)=ax+b.
(1)若函數(shù)h(x)=f(x)-g(x)在(0,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(2)若直線g(x)=ax+b是函數(shù)f(x)=lnx-
1
x
圖象的切線,求a+b的最小值;
(3)當b=0時,若f(x)與g(x)的圖象有兩個交點A(x1,y1),B(x2,y2),求證:x1x2>2e2
(取e為2.8,取ln2為0.7,取
2
為1.4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正實數(shù)x,y,z滿足x2+y2+z2=4,則
2
xy+yz的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一個空間幾何體的三個視圖都是直角邊長為1的等腰直角三角形,則這個空間幾何體的外接球的表面積( 。
A、3B、3πC、9D、9π

查看答案和解析>>

同步練習冊答案