定義:如果數(shù)列的任意連續(xù)三項均能構成一個三角形的三邊長,則稱為“三角形”數(shù)列.對于“三角形”數(shù)列,如果函數(shù)使得仍為一個“三角形”數(shù)列,則稱是數(shù)列的“保三角形函數(shù)”,.
(Ⅰ)已知是首項為2,公差為1的等差數(shù)列,若是數(shù)列的“保三角形函數(shù)”,求k的取值范圍;
(Ⅱ)已知數(shù)列的首項為2010,是數(shù)列的前n項和,且滿足,證明是“三角形”數(shù)列;
(Ⅲ)根據(jù)“保三角形函數(shù)”的定義,對函數(shù),,和數(shù)列1,,,()提出一個正確的命題,并說明理由.
(Ⅰ),(Ⅱ)先求出數(shù)列的通項公式,然后根據(jù)“三角形”數(shù)列的定義證明即可,(3)函數(shù),是數(shù)列1,1+d,1+2d 的“保三角形函數(shù)”,必須滿足三個條件:①1,1+d,1+2d是三角形數(shù)列,所以,即.②數(shù)列中的各項必須在定義域內(nèi),即.
③是三角形數(shù)列.由于,是單調(diào)遞減函數(shù),所以,解得.
【解析】
試題分析:(1)顯然,對任意正整數(shù)都成立,
即是三角形數(shù)列. 2分
因為k>1,顯然有,由得,解得.
所以當時,是數(shù)列的“保三角形函數(shù)”. 5分
(2)由得,兩式相減得
所以,,
經(jīng)檢驗,此通項公式滿足 7分
顯然,因為,
所以 是“三角形”數(shù)列. 10分
(3)探究過程: 函數(shù),是數(shù)列1,1+d,1+2d 的“保三角形函數(shù)”,必須滿足三個條件:
①1,1+d,1+2d是三角形數(shù)列,所以,即.
②數(shù)列中的各項必須在定義域內(nèi),即.
③是三角形數(shù)列.
由于,是單調(diào)遞減函數(shù),所以,解得.
考點:本題考查了數(shù)列的運用
點評:本題是在新定義下對數(shù)列的綜合考查.關于新定義的題型,在作題過程中一定要理解定義,并會用定義來解題.
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年北大附中高三2月統(tǒng)練理科數(shù)學 題型:解答題
定義:如果數(shù)列的任意連續(xù)三項均能構成一個三角形的三邊長,則稱為“三角形”數(shù)列.對于“三角形”數(shù)列,如果函數(shù)使得仍為一個“三角形”數(shù)列,則稱是數(shù)列的“保三角形函數(shù)”,.
(Ⅰ)已知是首項為2,公差為1的等差數(shù)列,若是數(shù)列的“保三角形函數(shù)”,求k的取值范圍;
(Ⅱ)已知數(shù)列的首項為2010,是數(shù)列的前n項和,且滿足,證明是“三角形”數(shù)列;
(Ⅲ)根據(jù)“保三角形函數(shù)”的定義,對函數(shù),,和數(shù)列1,,,()提出一個正確的命題,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
定義:如果數(shù)列的任意連續(xù)三項均能構成一個三角形的三邊長,則稱為“三角形”數(shù)列.對于“三角形”數(shù)列,如果函數(shù)使得仍為一個“三角形”數(shù)列,則稱是數(shù)列的“保三角形函數(shù)”,.
(1)已知是首項為2,公差為1的等差數(shù)列,若是數(shù)列的“保三角形函數(shù)”,求k的取值范圍;
(2)已知數(shù)列的首項為2010,是數(shù)列的前n項和,且滿足,證明是“三角形”數(shù)列;
(3) 若是(2)中數(shù)列的“保三角形函數(shù)”,問數(shù)列最多有多少項.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com