在直角梯形ABCD中,ÐD=ÐBAD=90°,AD=DC=AB=a(如圖).將DADC沿AC折起,使DD′.記面ACD′為a,面ABCb,面BCD′為g.(1)若二面角a-AC-b為直角二面角(如圖2),求二面角b-BC-g的大。唬2)若二面角a-AC-b60°(如圖3),求三棱錐D-ABC的體積.

 

答案:
解析:

解:(1)在直角梯形ABCD中,由已知DDAC為等腰三角形,∴

CCH^AB,由AB=2a,可推得.∴ AC^BC  取AC的中點(diǎn)E,連結(jié)D¢E,則D¢E^AC  又∵ 二面角a-AC-b為直角二面角,∴ D¢E^b   又∵ BCÌ平面b  ∴ BC^D¢E  ∴ BC^a,而D¢CÌa,  ∴ BC^D¢C  ∴ ÐD¢CA為二面角b-BC-g的平面角.由于ÐD¢CA=45°,∴ 二面角b-BC-g為45°.

(2)取AC的中點(diǎn)E,連結(jié)D¢E,再過D¢作D¢O^b,垂足為O,連結(jié)OE.∵ AC^D¢E,∴AC^OE  ∴ÐD¢EO為二面角a-AC-b的平面角,∴ ÐD¢O=60°

在RtDD¢OE中,,


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角梯形ABCD中,∠D=∠BAD=90°,AD=DC=
12
AB=a(如圖),將△ADC沿AC折起,使D到D′.記面ACD′為α,面ABC為β,面BCD′為γ.
精英家教網(wǎng)
(1)若二面角α-AC-β為直二面角(如圖),求二面角β-BC-γ的大;
精英家教網(wǎng)
(2)若二面角α-AC-β為60°(如圖),求三棱錐D′-ABC的體積.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•鹽城二模)如圖,在直角梯形ABCD中,AB⊥AD,AD=DC=1,AB=3,動(dòng)點(diǎn)P在△BCD內(nèi)運(yùn)動(dòng)(含邊界),設(shè)
AP
AB
AD
(α,β∈R)
,則α+β的取值范圍是
[1,
4
3
]
[1,
4
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直角梯形ABCD中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2.E,F(xiàn),G分別為線段PC,PD,BC的中點(diǎn),現(xiàn)將△PDC折起,使平面PDC⊥平面ABCD.
(1)求證:AP∥平面EFG;
(2)在線段PB上確定一點(diǎn)Q,使PC⊥平面ADQ,試給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,∠BAD=90°,AD∥BC,AB=2,AD=
3
2
,BC=
1
2
,橢圓以A、B為焦點(diǎn)且經(jīng)過點(diǎn)D.
(Ⅰ)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求橢圓的方程;
(Ⅱ)以該橢圓的長軸為直徑作圓,判斷點(diǎn)C與該圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,CD=3,S△BCD=6,則梯形ABCD的面積為
8
8
,點(diǎn)A到BD的距離AH=
4
5
4
5

查看答案和解析>>

同步練習(xí)冊(cè)答案