圓x2+y2+2x-6y+3=0上兩點(diǎn)P,Q關(guān)于直線kx+y-4=0對稱,且(O為坐標(biāo)原點(diǎn)),請問滿足條件的直線PQ是否存在?若存在,求出其方程,若不存在,說明理由。
解:由題,圓的方程可以化為,圓心為,半徑為,
因?yàn)镻,Q關(guān)于直線kx+y-4=0對稱,P,Q在圓上,  
所以直線kx+y-4=0經(jīng)過圓心(-1,3),  
所以-k+3-4=0,得k=-1,
所以直線PQ的斜率為-1,
于是可設(shè)其方程為y=-x+b,  
與圓的方程聯(lián)立得,  
消去y得:,  
設(shè),則是上述方程的根,  
于是,  
因?yàn)?IMG style="VERTICAL-ALIGN: middle" border=0 src="http://thumb.1010pic.com/pic1/upload/papers/g02/20120322/201203221001182761006.gif">,其中   
所以,
,無解,
所以滿足條件的直線不存在。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-2x-1=0關(guān)于直線2x-y+3=0對稱的圓的方程是( 。
A、(x+3)2+(y-2)2=
1
2
B、(x-3)2+(y+2)2=
1
2
C、(x+3)2+(y-2)2=2
D、(x-3)2+(y+2)2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)圓x2+y2+2x+ky+k2=0的面積最大時(shí),圓心坐標(biāo)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)(2,1)的直線中,被圓x2+y2-2x-4y=0截得的弦長最短的直線方程為
x-y-1=0
x-y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-2x+6y+9=0的周長等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓 x2+y2=4與圓x2+y2-2x+y-5=0相交,則它們的公共弦所在的直線方程是
2x-y+1=0
2x-y+1=0

查看答案和解析>>

同步練習(xí)冊答案