分析:將函數f(x)化簡,去掉絕對值后,分別解不等式f(x)≥g(x)和f(x)<g(x),得到相應的x的取值范圍.最后得到函數F(x)在三個不同區(qū)間內分段函數的表達式,然后分別在三個區(qū)間內根據單調性,求出相應式子的值域,最后得到函數F(x)在R上的值域,從而得到函數有最大值而無最小值.
解答:解:f(x)=3-2|x|=
①當x≥0時,解f(x)≥g(x),得3-2x≥x
2-2x⇒0≤x≤
;
解f(x)<g(x),得3-2x<x
2-2x⇒x>
.
②當x<0,解f(x)≥g(x),得3+2x≥x
2-2x⇒2-
≤x<0;
解f(x)<g(x),得3+2x<x
2-2x⇒x<2-
;
綜上所述,得
F(x)= | 3+2x (x<2-) | x2-2x (2-≤x≤) | 3-2x (x>) |
| |
分三種情況討論:
①當x<2-
時,函數為y=3+2x,在區(qū)間(-∞,2-
)是單調增函數,故F(x)<F(2-
)=7-2
;
②當2-
≤x≤
時,函數為y=x
2-2x,在(2-
,1)是單調增函數,在(1,
)是單調減函數,
故-1≤F(x)≤2-
③當x>
時,函數為y=3-2x,在區(qū)間(
,+∞)是單調減函數,故F(x)<F(
)=3-2
<0;
∴函數F(x)的值域為(-∞,7-2
],可得函數F(x)最大值為F(2-
)=7-2
,沒有最小值.
故選B
點評:本題以含有絕對值的函數和分段函數為載體,考查了函數的值域與最值的求法、基本初等函數的單調性和值域等知識點,屬于中檔題.