已知四邊形ABCD的三個頂點A(0,2),B(-1,-2),C(3,1),且
BC
=2
AD
,則頂點D的坐標為( 。
A、(2,
7
2
)
B、(2,-
1
2
)
C、(3,2)
D、(1,3)
分析:本小題主要考查平面向量的基本知識,先設出點的坐標,根據(jù)所給的點的坐標,寫出向量的坐標,根據(jù)向量的數(shù)乘關(guān)系,得到向量坐標之間的關(guān)系,由橫標和縱標分別相等,得到結(jié)果.
解答:解:設頂點D的坐標為(x,y)
BC
=(4,3)
,
AD
=(x,y-2)
,
BC
=2
AD
,
2x=4
2y-4=3
?
x=2
y=
7
2

故選A
點評:向量首尾相連,構(gòu)成封閉圖形,則四個向量的和是零向量,用題目給出的三個點的坐標,再設出要求的坐標,寫出首尾相連的四個向量的坐標,讓四個向量相加結(jié)果是零向量,解出設的坐標.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知四邊形ABCD的頂點A(0,2)、B(-1,-2)、C(3,1),且
BC
=2
AD
,則頂點D的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-2:矩陣與變換:在平面直角坐標系xOy中,已知四邊形ABCD的四個頂點A(0,1),B(2,1),C(2,3),D(0,2),經(jīng)矩陣M=
10
k1
表示的變換作用后,四邊形ABCD變?yōu)樗倪?nbsp;A1B1C1D1,問:四邊形ABCD與四邊形A1B1C1D1的面積是否相等?試證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四邊形ABCD的對角線互相平分且相等,PA⊥面ABCD,則下列等式中不一定成立的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)自圓O外一點P引切線與圓切于點A,M為PA中點,過M引割線交圓于B,C兩點.求證:∠MCP=∠MPB.
(2)在平面直角坐標系xOy中,已知四邊形ABCD的四個頂點A(0,1),B(2,1),C(2,3),D(0,2),經(jīng)矩陣M=
10
k1
表示的變換作用后,四邊形ABCD變?yōu)樗倪呅蜛1B1C1D1,問:四邊形ABCD與四邊形A1B1C1D1的面積是否相等?試證明你的結(jié)論.
(3)已知A是曲線ρ=12sinθ上的動點,B是曲線ρ=12cos(θ-
π
6
)
上的動點,試求AB的最大值.
(4)設p是△ABC內(nèi)的一點,x,y,z是p到三邊a,b,c的距離,R是△ABC外接圓的半徑,證明
x
+
y
+
z
1
2R
a2+b2+c2

查看答案和解析>>

同步練習冊答案