(2009•金山區(qū)一模)若cosα=
3
5
,且α∈(0,
π
2
),則cos(α+
π
3
)=
3-4
3
10
3-4
3
10
分析:通過已知求出sinα,利用兩角和的余弦函數(shù)展開cos(α+
π
3
),代入函數(shù)值求解即可.
解答:解:cosα=
3
5
,且α∈(0,
π
2
),所以sinα=
1-(
3
5
)
2
=
4
5

所以cos(α+
π
3
)=cosαcos
π
3
-sinαsin
π
3
=
3
5
×
1
2
-
4
5
×
3
2
=
3-4
3
10

故答案為:
3-4
3
10
點(diǎn)評(píng):本題是基礎(chǔ)題,考查同角三角函數(shù)的基本關(guān)系式與兩角和的余弦函數(shù)的應(yīng)用,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•金山區(qū)一模)若函數(shù)f(x)、g(x)的定義域和值域都是R,則“f(x)<g(x),x∈R”成立的充要條件是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•金山區(qū)一模)若f(n)為n2+1的各位數(shù)字之和(n∈N*).如:因?yàn)?42+1=197,1+9+7=17,所以f(14)=17.記f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n)),k∈N*,則f2005(8)=
11
11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•金山區(qū)一模)已知函數(shù)f(x)=loga
1-mxx-1
在定義域D上是奇函數(shù),(其中a>0且a≠1).
(1)求出m的值,并求出定義域D;
(2)判斷f(x)在(1,+∞)上的單調(diào)性,并加以證明;
(3)當(dāng)x∈(r,a-2)時(shí),f(x)的值的范圍恰為(1,+∞),求a及r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•金山區(qū)一模)在(x2+
1x
)6
的二項(xiàng)展開式中的常數(shù)項(xiàng)是第
5
5
項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•金山區(qū)一模)(
1+i1-i
2010=
-1
-1
.(i為虛數(shù)單位)

查看答案和解析>>

同步練習(xí)冊答案