【題目】如圖l,在邊長(zhǎng)為2的菱形中,于點(diǎn),將沿折起到的位置,使,如圖2.

(1)求證:平面;

(2)求二面角的余弦值;

(3)在線段上是否存在點(diǎn),使平面平面?若存在,求的值;若不存在,說(shuō)明理由.

【答案】(1)證明見(jiàn)解析;(2);(3).

【解析】

(1)由,可得,結(jié)合可得到平面,由此得,結(jié)合利用線面垂直的判定定理可得結(jié)果;(2)以為原點(diǎn),分別以,,,,軸,建立空間直角坐標(biāo)系,利用向量垂直數(shù)量積為零列方程求出平面的法向量,結(jié)合平面的法向量為,利用空間向量夾角余弦公式可得結(jié)果;(3)假設(shè)在線段上存在一點(diǎn)滿(mǎn)足條件,設(shè)出點(diǎn)的坐標(biāo),結(jié)合對(duì)應(yīng)的比例關(guān)系,通過(guò)兩平面法向量的數(shù)量積為零來(lái)確定相應(yīng)的參數(shù)值,進(jìn)而得以確定存在性問(wèn)題.

1)因?yàn)?/span>,,,

所以平面

因?yàn)?/span>平面,

所以,

又因?yàn)?/span>,

所以平面BCDE.

2)以E為原點(diǎn),分別以EB,ED,x,y,z軸,建立空間直角坐標(biāo)系,

,,

所以,

設(shè)平面的法向量

,

,得,

因?yàn)?/span>平面,

所以平面的法向量

,

因?yàn)樗蠖娼菫殇J角,

所以二面角的余弦值為.

3)假設(shè)在線段BD上存在一點(diǎn)P,使得平面平面

設(shè),,則

所以

所以,,

設(shè)平面的法向量,

,,

,得,

因?yàn)槠矫?/span>平面,

所以,解得,

所以在線段BD上存在點(diǎn)P,使得平面平面,且.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)有極值.

(1)求的取值范圍;

(2)若處取得極值,且當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓)的左、右焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為.已知

1)求橢圓的離心率;

2)設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段為直徑的圓經(jīng)過(guò)點(diǎn),經(jīng)過(guò)原點(diǎn)的直線與該圓相切,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,點(diǎn)滿(mǎn)足,記點(diǎn)的軌跡為.斜率為的直線過(guò)點(diǎn),且與軌跡相交于兩點(diǎn).

1)求軌跡的方程;

2)求斜率的取值范圍;

3)在軸上是否存在定點(diǎn),使得無(wú)論直線繞點(diǎn)怎樣轉(zhuǎn)動(dòng),總有成立?如果存在,求出定點(diǎn);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿(mǎn)足,且

(1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,,平面平面,且.

(Ⅰ)求證:∥平面;

(Ⅱ)求二面角的大小;

(Ⅲ)已知點(diǎn)在棱上,且異面直線所成角的余弦值為,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四面體ABCD中,平面DAC⊥底面ABC,,ADCDOAC的中點(diǎn),EBD的中點(diǎn).

(1)證明:DO⊥底面ABC;

(2)求二面角D-AE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,直線軸的交點(diǎn)為,與的交點(diǎn)為,且

(Ⅰ)求的方程;

(Ⅱ)設(shè)過(guò)定點(diǎn)的直線與拋物線交于,兩點(diǎn),連接并延長(zhǎng)交拋物線的準(zhǔn)線于點(diǎn),當(dāng)直線恰與拋物線相切時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=4cos ωx·sina(ω>0)圖象上最高點(diǎn)的縱坐標(biāo)為2,且圖象上相鄰兩個(gè)最高點(diǎn)的距離為π.

(1)aω的值;

(2)求函數(shù)f(x)[0,π]上的單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案