已知P(x,y)是直線上一動(dòng)點(diǎn),PA,PB是圓C:的兩條切線,A、B是切點(diǎn),若四邊形PACB的最小面積是2,則的值為

A.3        B.        C.           D.2

 

【答案】

D

【解析】

試題分析:根據(jù)題意,由于P(x,y)是直線上一動(dòng)點(diǎn),PA,PB是圓C:的兩條切線,A、B是切點(diǎn),那么可由切線長(zhǎng)定理,以及四邊形PACB的最小面積即為圓心到點(diǎn)P的距離的最小時(shí)得到,那么根據(jù)點(diǎn)到直線的距離公式可知,d==1.可知斜率k=1,故答案為D.

考點(diǎn):直線與圓的位置關(guān)系

點(diǎn)評(píng):主要是考查了直線與圓的位置關(guān)系的運(yùn)用,屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一青蛙從點(diǎn)A0(x0,y0)開始依次水平向右和豎直向上跳動(dòng),其落點(diǎn)坐標(biāo)依次是Ai(xi,yi)(i∈N*),(如圖所示,A0(x0,y0)坐標(biāo)以已知條件為準(zhǔn)),Sn表示青蛙從點(diǎn)A0到點(diǎn)An所經(jīng)過的路程.
(1)若點(diǎn)A0(x0,y0)為拋物線y2=2px(p>0)準(zhǔn)線上一點(diǎn),點(diǎn)A1,A2均在該拋物線上,并且直線A1A2經(jīng)過該拋物線的焦點(diǎn),證明S2=3p.
(2)若點(diǎn)An(xn,yn)要么落在y=x所表示的曲線上,要么落在y=x2所表示的曲線上,并且A0(
1
2
,
1
2
)
,試寫出
lim
n→+∞
Sn
(不需證明);
(3)若點(diǎn)An(xn,yn)要么落在y=2
1+8x
-1
所表示的曲線上,要么落在y=2
1+8x
+1
所表示的曲線上,并且A0(0,4),求Sn的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市閔行區(qū)七寶中學(xué)高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

一青蛙從點(diǎn)A(x,y)開始依次水平向右和豎直向上跳動(dòng),其落點(diǎn)坐標(biāo)依次是Ai(xi,yi)(i∈N*),(如圖所示,A(x,y)坐標(biāo)以已知條件為準(zhǔn)),Sn表示青蛙從點(diǎn)A到點(diǎn)An所經(jīng)過的路程.
(1)若點(diǎn)A(x,y)為拋物線y2=2px(p>0)準(zhǔn)線上一點(diǎn),點(diǎn)A1,A2均在該拋物線上,并且直線A1A2經(jīng)過該拋物線的焦點(diǎn),證明S2=3p.
(2)若點(diǎn)An(xn,yn)要么落在y=x所表示的曲線上,要么落在y=x2所表示的曲線上,并且,試寫出(不需證明);
(3)若點(diǎn)An(xn,yn)要么落在所表示的曲線上,要么落在所表示的曲線上,并且A(0,4),求Sn的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案