假設(shè)關(guān)于某種設(shè)備的使用年限x(年)與所支出的維修費(fèi)用y(萬(wàn)元),有如下統(tǒng)計(jì)資料:
X23456
y2.23.85.56.57.0
①對(duì)x、y進(jìn)行線性相關(guān)性檢驗(yàn);
②如果x、y具有線性相關(guān)關(guān)系,求出線性回歸方程;
③估計(jì)使用年限為8年,維修費(fèi)用約是多少?
b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
1
-n
.
x
2
,r=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
1
-n
.
x
2
n
i=1
y
2
1
-n
.
y
2
 

(已知:
s
i=1
xi2
=90,
s
i=1
yi2
=140.8,
s
i=1
xiyi
=112.3,
79
≈8.9,
2
≈1.4)
考點(diǎn):回歸分析
專題:應(yīng)用題,概率與統(tǒng)計(jì)
分析:①由題意,r=
112.3-5•4•5
90-5•42
140.8-5•52
≈0.987,故有較強(qiáng)的線性相關(guān)關(guān)系;
②根據(jù)所給的數(shù)據(jù),做出變量x,y的平均數(shù),根據(jù)最小二乘法做出線性回歸方程的系數(shù)b,再根據(jù)樣本中心點(diǎn)一定在線性回歸方程上,求出a的值,寫出線性回歸方程;
③當(dāng)自變量為8時(shí),代入線性回歸方程,求出維修費(fèi)用,這是一個(gè)預(yù)報(bào)值.
解答: 解:①由題意,r=
112.3-5•4•5
90-5•42
140.8-5•52
≈0.987,故有較強(qiáng)的線性相關(guān)關(guān)系;
②b=
112.3-5•4•5
90-5•42
,a=5-1.23×4=0.08,
∴y=1.23x+0.08
③當(dāng)x=8時(shí),y=1.23×8+0.08=9.92萬(wàn)元.
點(diǎn)評(píng):本題考查線性回歸方程的求解和應(yīng)用,是一個(gè)基礎(chǔ)題,解題的關(guān)鍵是正確應(yīng)用最小二乘法來(lái)求線性回歸方程的系數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1、F2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn),如雙曲線上存在點(diǎn)P,使得∠PF1F2=30°,∠PF2F1=120°,則雙曲線的離心率為(  )
A、2
B、
2
C、
3
2
+1
D、
3
+1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)均勻的正方體玩具,各個(gè)面上分別寫有1,2,3,4,5,6,將這個(gè)玩具先后拋擲2次,求:
(1)朝上的一面數(shù)相等的概率;
(2)朝上的一面數(shù)之和小于5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx,g(x)=-
a
x
(a>0),設(shè)F(x)=f(x)+g(x)
(Ⅰ)求函數(shù)F(x)的單調(diào)區(qū)間
(Ⅱ)若以函數(shù)y=F(x)(x∈(0,3])圖象上任意一點(diǎn)P(x0,y0)為切點(diǎn)的切線的斜率k≤
1
2
恒成立,求實(shí)數(shù)a的最小值
(Ⅲ)是否存在實(shí)數(shù)m,使得函數(shù)y=g(
2a
x2+1
)+m-1的圖象與函數(shù)y=f(1+x2)的圖象恰有四個(gè)不同交點(diǎn)?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立坐標(biāo)系.已知點(diǎn)A的極坐標(biāo)為(2
2
,
π
4
),直線L的極坐標(biāo)方程為ρcos(θ-
π
4
)=a,且點(diǎn)A在直線L上.
(1)求a的值及直線L的直角坐標(biāo)方程.
(2)圓C的參數(shù)方程
x=1+cosα
y=-1+sinα
(α為參數(shù)),試判斷直線L與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求曲線C:
x=
3
cosθ
y=sinθ
(θ為參數(shù))上的點(diǎn)到直線ρsin(θ+
π
4
)=2
2
的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我校為了了解高二級(jí)學(xué)生參加體育活動(dòng)的情況,隨機(jī)抽取了100名高二級(jí)學(xué)生進(jìn)行調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均參加體育活動(dòng)時(shí)間的頻率分布直方圖.將日均參加體育活動(dòng)時(shí)間不低于40分鐘的學(xué)生稱為參加體育活動(dòng)的“積極分子”.根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料,在犯錯(cuò)誤的概率不超過(guò)5%的前提下,你是否認(rèn)為參加體育活動(dòng)的“積極分子”與性別有關(guān)?
非積極分子積極分子合計(jì)
1545
合計(jì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,點(diǎn)M(sin2θ,1)在角α的終邊上,點(diǎn)N(1,-2cos2θ)在角β的終邊上,且
OM
ON
=-
3
2

(1)求點(diǎn)M和N的坐標(biāo);
(2)求tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在某次數(shù)學(xué)考試中,從高一年級(jí)300名男生和300名女生中,各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),作出莖葉圖如圖所示:
(1)根據(jù)樣本統(tǒng)計(jì)結(jié)果,估計(jì)全年級(jí)90分以上的共有多少人?
(2)若記不低于90分者為優(yōu)秀,則在抽取的樣本里不低于86分的男生和女生中各選一人,求兩人均為優(yōu)秀的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案