精英家教網 > 高中數學 > 題目詳情
已知橢圓上一點P到它的右準線的距離為10, 則點P到它的左焦點的距離是(   )
A.8B.10C.12D.14
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

若橢圓的左右焦點分別為,線段被拋物線的焦點內分成了的兩段.
(1)求橢圓的離心率;
(2)過點的直線交橢圓于不同兩點、,且,當的面積最大時,求直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知地球運行的軌道是橢圓,太陽在這個橢圓的一個焦點上,這個橢圓的長半軸長約為km,半焦距約為km,則地球到太陽的最大距離是  km。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓的一個焦點是(0,2),那么(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知是橢圓上的點,以為圓心的圓與軸相切于橢
圓的焦點,圓軸相交于兩點.若為銳角三角形,則橢圓的離心率
的取值范圍為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分).已知橢圓的中心在原點,焦點在軸上,離心率,一
條準線的方程為(Ⅰ)求橢圓的方程;(Ⅱ)設,直線過橢圓的右焦點為
且與橢圓交于、兩點,若,求直線的方程

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C:+=1(a>b>0),直線y=x+與以原點為圓心,以橢圓C的短半軸長為半徑的圓相切,F(xiàn)1,F(xiàn)2為其左、右焦點,P為橢圓C上任一點,△F1PF2的重心為G,內心為I,且IG∥F1F2。⑴求橢圓C的方程。⑵若直線L:y=kx+m(k≠0)與橢圓C交于不同兩點A,B且線段AB的垂直平分線過定點C(,0)求實數k的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題12分) 已知拋物線,頂點為O,動直線與拋物
交于兩點
(I)求證:是一個與無關的常數;
(II)求滿足的點的軌跡方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設橢圓的右焦點為,直線 軸交于點,若(其中為坐標原點).
(Ⅰ)求橢圓的方程;
(Ⅱ)設是橢圓上的任意一點,為圓的任意一條直徑(,為直徑的兩個端點),求的最大值.

查看答案和解析>>

同步練習冊答案