在極坐標(biāo)系中,若過點(diǎn)A(4,0)的直線l與曲線ρ2=4ρcosθ-3有公共點(diǎn),則直線l的斜率的取值范圍為
 
分析:利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換將ρ2=4ρcosθ-3化為直角坐標(biāo)方程,再在直角坐標(biāo)系中算出過點(diǎn)A的圓的切線的斜率,最后結(jié)合圖象得出直線l的斜率的取值范圍即可.
解答:精英家教網(wǎng)解:將ρ2=4ρcosθ-3化為直角坐標(biāo)方程得:
(x-2)2+y2=1,畫出圖形.
設(shè)過A(4,0)的圓的切線方程為:y=k(x-4),
則:
|k-4k|
k2+1
=1
,
解得:k=±
3
3

由圖易得-
3
3
≤k≤
3
3

故答案為:-
3
3
≤k≤
3
3
點(diǎn)評:本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,能在極坐標(biāo)系中用極坐標(biāo)刻畫點(diǎn)的位置,體會在極坐標(biāo)系和平面直角坐標(biāo)系中刻畫點(diǎn)的位置的區(qū)別,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,若過點(diǎn)A(3,0)且與極軸垂直的直線交曲線ρ=4cosθ于A、B兩點(diǎn),則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,若過點(diǎn)(1,0)且與極軸垂直的直線交曲線ρ=4cosθ于A、B兩點(diǎn),則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題(考生只能從A,B,C中選做一題,多做以所做第一題記分)
A.(不等式選做題)
已知a∈R,若關(guān)于x的方程x2+4x+|a-1|+|a+1|=0無實(shí)根,則a的取值范圍是
(-∞,-2)∪(2,+∞)
(-∞,-2)∪(2,+∞)

B.(幾何證明選做題)
如圖,CD是圓O的切線,切點(diǎn)為C,點(diǎn)A、B在圓O上,BC=1,∠BCD=30°,則圓O的面積為
π
π

C.(坐標(biāo)系與參數(shù)方程選做題)
在極坐標(biāo)系中,若過點(diǎn)(1,0)且與極軸垂直的直線交曲線ρ=4cosθ于A、B兩點(diǎn),則|AB|=
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(考生注意:請?jiān)谙铝袃深}中任選一題作答,如果多做則按所做的第一題評分)
(1)在極坐標(biāo)系中,若過點(diǎn)(1,0)且與極軸垂直的直線交曲線ρ=4cosθ于A、B兩點(diǎn),則|AB|=
2
3
2
3

(2)已知方程|2x-1|-|2x+1|=a+1有實(shí)數(shù)解,則a的取值范圍為
[-3,-1)
[-3,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(注意:請?jiān)谙铝卸}中任選一題作答,如果多做,則按所做的第一題評分)
A、(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,若過點(diǎn)A(3,0)且與極軸垂直的直線交曲線ρ=4cosθ于A、B兩點(diǎn),則|AB|=
2
3
2
3

B、若不等式|2a-1|≤|x+
1
x
|
對一切非零實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍是
[-
1
2
,
3
2
]
[-
1
2
,
3
2
]

查看答案和解析>>

同步練習(xí)冊答案