如果x=數(shù)學公式,y=3數(shù)學公式,集合M={m|m=a+b數(shù)學公式,a,b∈Q},則有


  1. A.
    x∈M且y∈M
  2. B.
    x∉M且y∈M
  3. C.
    x∈M且y∉M
  4. D.
    x∉M且y∉M
C
分析:化簡x=,判斷它與M的關系,然后判斷y=3與集合M={m|m=a+b,a,b∈Q}的關系即可.
解答:因為x===∈M,
y=3,∉M={m|m=a+b,a,b∈Q},
故選C.
點評:本題考查元素與集合的關系,分母有理化,基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.不等式|x+3|-|x-2|≥3的解集為
 

B.如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點D,則
BD
DA
=
 

C.已知圓C的參數(shù)方程為
x=cosα
y=1+sinα
(a為參數(shù))以原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρsinθ=1,則直線l與圓C的交點的直角坐標系為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個結論:
(1)合情推理是由特殊到一般的推理,得到的結論不一定正確,演繹推理是由一般到特殊的推理,得到的結論一定正確;
(2)一般地,當r的絕對值大于0.75時,認為兩個變量之間有很強的線性相關關系,如果變量y與x之間的相關系數(shù)r=-0.9568,則變量y與x之間具有線性關系;
(3)用獨立性檢驗(2×2列聯(lián)表法)來考察兩個分類變量是否有關系時,算出的隨機變量x2的值越大,說明“x與y有關系”成立的可能性越大;
(4)已知a,b∈R,若a-b>0則a>b;同樣的已知a,b∈C(C為復數(shù)集)若a-b>0則a>b.
其中結論正確的序號為
(2)(3)
(2)(3)
.(寫出你認為正確的所有結論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)不等式|2x-1|<3的解集為
(-1,2)
(-1,2)

B、(選修4-1幾何證明選講) 如圖所示,AC和AB分別是⊙O的切線,且OC=3,AB=4,延長AO到D點,則△ABC的面積是
192
25
192
25

C.(坐標系與參數(shù)方程選做題)參數(shù)方程
x=cosα
y=1+sinα
(α為參數(shù))化成普通方程為
x2+(y-1)2=1
x2+(y-1)2=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A是自然數(shù)集的一個非空子集,對于k∈A,如果k2∉A,且
k
∉A
,那么k是A的一個“酷元”,給定S={x∈N|y=lg(36-x2)},設集合M由集合S中的兩個元素構成,且集合M中的兩個元素都是“酷元”,那么這樣的集合M有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.
(1)選修4-2:矩陣與變換
已知矩陣A=
12
34

①求矩陣A的逆矩陣B;
②若直線l經(jīng)過矩陣B變換后的方程為y=x,求直線l的方程.
(2)選修4-4:坐標系與參數(shù)方程
已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中x軸的正半軸重合.圓C的參數(shù)方程為
x=1+2cosα
y=-1+2sinα
(a為參數(shù)),點Q極坐標為(2,
7
4
π).
(Ⅰ)化圓C的參數(shù)方程為極坐標方程;
(Ⅱ)若點P是圓C上的任意一點,求P、Q兩點距離的最小值.
(3)選修4-5:不等式選講
(I)關于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范圍.
(II)設x,y,z∈R,且
x2
16
+
y2
5
+
z2
4
=1
,求x+y+z的取值范圍.

查看答案和解析>>

同步練習冊答案