分析 (1)根據(jù)條件可求得$\overrightarrow{a}•\overrightarrow=2\sqrt{2}|\overrightarrow|$,進行數(shù)量積的運算,便可由$(\frac{1}{2}\overrightarrow{a}+\overrightarrow)•(2\overrightarrow{a}-3\overrightarrow)=12$得出$3|\overrightarrow{|}^{2}-\sqrt{2}|\overrightarrow|-4=0$,解該方程即可求得$|\overrightarrow|$的值;
(2)根據(jù)投影的計算公式即可得出$\overrightarrow$在$\overrightarrow{a}$方向上的投影.
解答 解:(1)根據(jù)條件,$\overrightarrow{a}•\overrightarrow=|\overrightarrow{a}||\overrightarrow|cos45°=2\sqrt{2}|\overrightarrow|$;
∴$(\frac{1}{2}\overrightarrow{a}+\overrightarrow)•(2\overrightarrow{a}-3\overrightarrow)$=${\overrightarrow{a}}^{2}+\frac{1}{2}\overrightarrow{a}•\overrightarrow-3{\overrightarrow}^{2}$=$16+\sqrt{2}|\overrightarrow|-3|\overrightarrow{|}^{2}=12$;
∴$3|\overrightarrow{|}^{2}-\sqrt{2}|\overrightarrow|-4=0$;
解得$|\overrightarrow|=\sqrt{2}$或$-\frac{2\sqrt{2}}{3}$(舍去);
(2)$\overrightarrow$在$\overrightarrow{a}$上的投影為$|\overrightarrow|cos45°=\sqrt{2}×\frac{\sqrt{2}}{2}=1$.
點評 考查數(shù)量積的運算及計算公式,一元二次方程的解法,以及投影的定義及計算公式.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12.5、12.5 | B. | 12.5、13 | C. | 13、12.5 | D. | 13、13 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 36種 | B. | 60種 | C. | 90種 | D. | 120種 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com