函數(shù)y=sin(x+15°)+
2
cos(x+60°)的最大值
 
分析:把cos(x+60°)轉(zhuǎn)化為cos(x+15°+45°),進(jìn)而利用兩角和公式展開(kāi)后化簡(jiǎn)整理求得y=cos(x+15°),進(jìn)而利用余弦函數(shù)的性質(zhì)求得函數(shù)的最大值.
解答:解:y=sin(x+15°)+
2
cos(x+60°)
=sin(x+15°)+
2
cos(x+15°+45°)
=sin(x+15°)+
2
[cos(x+15°)
2
2
-sin(x+15°)
2
2
]
=cos(x+15°)≤1
故答案為:1
點(diǎn)評(píng):本題主要考查了三角函數(shù)的最值問(wèn)題,兩角和公式的化簡(jiǎn)求值.考查了學(xué)生綜合分析問(wèn)題和解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=sin(x+
π
6
)sin(x-
π
6
)+acosx的最大值.(其中a為定值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)設(shè)ω>0,函數(shù)y=sin(ωx+φ)(-π<φ<π)的圖象向左平移
π
3
個(gè)單位后,得到下面的圖象,則ω,φ的值為(  )
A、ω=1,?=
3
B、ω=2,?=
3
C、ω=1,?=-
π
3
D、ω=2,?=-
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sinπxcosπx的最小正周期是
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•淄博一模)已知函數(shù)y=sin(ωx+φ)(ω>0,0<φ≤
π
2
)的部分圖象如示,則φ的值為
π
3
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)ω>0,函數(shù)y=sin(ωx+
π
3
)的圖象向右平移
3
個(gè)單位后與原圖象重合,則ω的最小值是(  )
A、
3
4
B、
3
2
C、3
D、
9
4

查看答案和解析>>

同步練習(xí)冊(cè)答案