已知函數(shù)
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若,證明當(dāng)時(shí),函數(shù)的圖象恒在函數(shù)圖象的上方.
(Ⅰ)單調(diào)遞減區(qū)間是。單調(diào)遞增區(qū)間是;(Ⅱ)參考解析.

試題分析:(Ⅰ)本小題含對(duì)數(shù)式的函數(shù),首先確定定義域.通過求導(dǎo)就可知道函數(shù)的單調(diào)區(qū)間.本題的易錯(cuò)易漏點(diǎn)就是定義域的范圍.(Ⅱ)函數(shù)的圖象恒在函數(shù)圖象的上方等價(jià)于兩個(gè)函數(shù)的對(duì)減后的值恒大于零(設(shè)在上方的減去在下方的).所以轉(zhuǎn)化成在x>1上的恒大于零的問題.通過構(gòu)造新的函數(shù),對(duì)其求導(dǎo),得到函數(shù)在x>1上為遞增函數(shù).又f(1)>0.所以函數(shù)恒大于零.即函數(shù)的圖象恒在函數(shù)圖象的上方成立.
試題解析:解:(Ⅰ)的定義域?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824030508088533.png" style="vertical-align:middle;" />,
求得: 2分
,則 3分
當(dāng)變化時(shí),的變化情況如下表:


1


-
0
+


極小值

的單調(diào)遞減區(qū)間是。單調(diào)遞增區(qū)間是 6分
(Ⅱ)令
  8分

上單調(diào)遞增 10分


∴當(dāng)時(shí),的圖象恒在圖象的上方. 12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)若處取得極值,求實(shí)數(shù)的值;
(2)求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)若,求證:當(dāng)時(shí),;
(2)若在區(qū)間上單調(diào)遞增,試求的取值范圍;
(3)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
(1)若存在使得≥0成立,求的范圍
(2)求證:當(dāng)>1時(shí),在(1)的條件下,成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(I)求的單調(diào)區(qū)間;
(II)若存在使求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),,為自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)對(duì)任意的,恒成立,求的最小值;
(3)若對(duì)任意給定的,在上總存在兩個(gè)不同的,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),其中
(I)若函數(shù)圖象恒過定點(diǎn)P,且點(diǎn)P關(guān)于直線的對(duì)稱點(diǎn)在的圖象上,求m的值;
(Ⅱ)當(dāng)時(shí),設(shè),討論的單調(diào)性;
(Ⅲ)在(I)的條件下,設(shè),曲線上是否存在兩點(diǎn)P、Q,使△OPQ(O為原點(diǎn))是以O(shè)為直角頂點(diǎn)的直角三角形,且斜邊的中點(diǎn)在y軸上?如果存在,求a的取值范圍;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)判斷函數(shù)上的單調(diào)性,并用定義加以證明;
(Ⅱ)若對(duì)任意,總存在,使得成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)。
(1)如果,求函數(shù)的單調(diào)遞減區(qū)間;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(3)證明:當(dāng)時(shí),

查看答案和解析>>

同步練習(xí)冊(cè)答案