在△ABC中,cosA=
1
3
,則sin(A+
π
4
)=
 
考點:兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:由題意可得sinA,代入兩角和的正弦函數(shù)公式可得.
解答: 解:∵在△ABC中,cosA=
1
3
,
∴sinA=
1-cos2A
=
2
2
3

∴sin(A+
π
4
)=
2
2
sinA+
2
2
cosA
=
2
2
×
2
2
3
+
2
2
×
1
3
=
4+
2
6

故答案為:
4+
2
6
點評:本題考查兩角和與差的正弦函數(shù),屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

拋擲一枚質地不均勻的骰子,出現(xiàn)向上點數(shù)為1,2,3,4,5,6的概率依次記為p1,p2,p3,p4,p5,p6,經(jīng)統(tǒng)計發(fā)現(xiàn),數(shù)列{pn}恰好構成等差數(shù)列,且p4是p1的3倍.
(Ⅰ)求數(shù)列{pn}的通項公式.
(Ⅱ)甲、乙兩人用這枚骰子玩游戲,并規(guī)定:擲一次骰子后,若向上點數(shù)為奇數(shù),則甲獲勝,否則已獲勝,請問這樣的規(guī)則對甲、乙二人是否公平?請說明理由;
(Ⅲ)甲、乙、丙三人用這枚骰子玩游戲,根據(jù)擲一次后向上的點數(shù)決定勝出者,并制定了公平的游戲方案,試在下面的表格中列舉出兩種可能的方案(不必證明).
方案序號 甲勝出對應點數(shù) 乙勝出對應點數(shù) 丙勝出對應點數(shù)
 ①      
 ②      

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x、y、z滿足2x2+3y2+6z2=a(a>0),且x+y+z的最大值是1,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的首項al=1,公差d>0,且第二項、第五項、第十四項分別是一個等比數(shù)列的第二項、第三項、第四項,
(1)求數(shù)列{an}的通項公式:
(2)設bn=
1
n(an+5)
(n∈N*),Sn=b1+b2+…+bn是否存在最大的整數(shù)t,使得對任意的n均有Sn
t
36
總成立?若存在,求出t:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面上有如下命題:“O為直線AB外的一點,則點P在直線AB上的充要條件是:存在實數(shù)x,y滿足
OP
=x
OA
+y
OB
,且x+y=1”,我們把它稱為平面中三點共線定理,請嘗試類比此命題,給出空間中四點共面定理,應描述為:
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足不等式組
3x-y≤3
x+y≥1
x-y≥-1
,則z=2x-y+1的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l的參數(shù)方程為:
x=-2+tcosα
y=tsinα
(t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=2sinθ-2cosθ.
(Ⅰ)求曲線C的普通方程;
(Ⅱ)當α=
π
4
時,求直線l被曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinx-2x+1,則f(tan
π
7
)+f(tan
7
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,我們知道,圓環(huán)也可看作線段AB繞圓心O旋轉一周所形成的平面圖形,又圓環(huán)的面積S=π(R2-r2)=(R-r)×2π×
R+r
2
.所以,圓環(huán)的面積等于是以線段AB=R-r為寬,以AB中點繞圓心O旋轉一周所形成的圓的周長2π×
R+r
2
為長的矩形面積.請將上述想法拓展到空間,并解決下列問題:若將平面區(qū)域M={(x,y)|(x-d)2+y2≤r2}(其中0<r<d)繞y軸旋轉一周,則所形成的旋轉體的體積是
 
.(結果用d,r表示)

查看答案和解析>>

同步練習冊答案