如圖,設(shè)拋物線方程為為直線上任意一點(diǎn),過(guò)引拋物線的切線,切點(diǎn)分別為

(1)求證:三點(diǎn)的橫坐標(biāo)成等差數(shù)列;

(2)已知當(dāng)點(diǎn)的坐標(biāo)為時(shí),.求此時(shí)拋物線的方程。

 

【答案】

(1)根據(jù)已知條件設(shè)出點(diǎn)A,B的坐標(biāo),,然后借助于拋物線的導(dǎo)數(shù)來(lái)得到斜率值,.,進(jìn)而解方程,得到證明。

(2)拋物線方程為

【解析】

試題分析:(1)證明:由題意設(shè)

,得,所以,

因此直線的方程為

直線的方程為

所以,①  .②

由①減②得,因此,即

所以 三點(diǎn)的橫坐標(biāo)成等差數(shù)列.              6分

(2)由(1)知,當(dāng)時(shí),將其代入①、②并整理得:

,,

所以是方程的兩根,

因此,

,所以

由弦長(zhǎng)公式得

,所以,

因此所求拋物線方程為.    12分

考點(diǎn):直線與拋物線的位置關(guān)系

點(diǎn)評(píng):解決的關(guān)鍵是利用直線與拋物線的相切得到切線的斜率,同時(shí)聯(lián)立方程組求解弦長(zhǎng),屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,設(shè)拋物線方程為x2=2py(p>0),M為直線y=-2p上任意一點(diǎn),過(guò)M引拋物線的切線,切點(diǎn)分別為A,B.
(Ⅰ)求證:A,M,B三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(Ⅱ)已知當(dāng)M點(diǎn)的坐標(biāo)為(2,-2p)時(shí),|AB|=4
10
.求此時(shí)拋物線的方程;
(Ⅲ)是否存在點(diǎn)M,使得點(diǎn)C關(guān)于直線AB的對(duì)稱(chēng)點(diǎn)D在拋物線x2=2py(p>0)上,其中,點(diǎn)C滿(mǎn)足
OC
=
OA
+
OB
(O為坐標(biāo)原點(diǎn)).若存在,求出所有適合題意的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,設(shè)拋物線方程為x2=2py(p>0),M為直線y=-2p上任意一點(diǎn),過(guò)M引拋物線的切線,切點(diǎn)分別為A,B.
(Ⅰ)求證:A,M,B三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(Ⅱ)已知當(dāng)M點(diǎn)的坐標(biāo)為(2,2p)時(shí),|AB|=4
10
,求此時(shí)拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)拋物線方程為x2=2py(p>0),M為直線l:y=-2p上任意一點(diǎn),過(guò)M引拋物線的切線,切點(diǎn)分別為A、B.
(1)設(shè)拋物線上一點(diǎn)P到直線l的距離為d,F(xiàn)為焦點(diǎn),當(dāng)d-|PF|=
32
時(shí),求拋物線方程;
(2)若M(2,-2),求線段AB的長(zhǎng);
(3)求M到直線AB的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川省成都外國(guó)語(yǔ)學(xué)院高三2010-2011學(xué)年9月月考數(shù)學(xué)試題(理科) 題型:解答題

如圖,設(shè)拋物線方程為直線上任意一點(diǎn),過(guò)M引拋物線的切線,切點(diǎn)分別為A,B。

(1)求證:A,M,B三點(diǎn)的橫坐標(biāo)成等差數(shù)列;

(2)已知當(dāng)M點(diǎn)的坐標(biāo)為時(shí),,求此時(shí)拋物線的方程;

(3)是否存在點(diǎn)M,使得點(diǎn)C關(guān)于直線AB的對(duì)稱(chēng)點(diǎn)D在拋物線上,其中,點(diǎn)C滿(mǎn)足O為坐標(biāo)原點(diǎn)).若存在,求出所有適合題意的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案