已知:,
(1)求證:; (2)求的最小值.
(1) ,所以,所以,,從而有2+ ,即:,所以原不等式成立 (2)8
解析試題分析:(1)證明:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/67/5/jv5uo.png" style="vertical-align:middle;" />所以,所以
所以,從而有2+
即:
即:,所以原不等式成立.
(2)……2分
即當(dāng)且僅當(dāng)時(shí)等號(hào)成立
即當(dāng)時(shí),
的最小值為8. 2分
考點(diǎn):均值不等式求最值
點(diǎn)評(píng):由均值不等式求最值時(shí)要滿足一正二定三相等,一,都是正實(shí)數(shù),二,當(dāng)和為定值時(shí),積取最值,當(dāng)積為定值時(shí),和為定值,三,當(dāng)且僅當(dāng)時(shí)等號(hào)成立取得最值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知小矩形花壇ABCD中,AB=3 m,AD=2 m,現(xiàn)要將小矩形花壇建成大矩形花壇AMPN,使點(diǎn)B在AM上,點(diǎn)D在AN上,且對(duì)角線MN過點(diǎn)C.
(1)要使矩形AMPN的面積大于32 m2,AN的長(zhǎng)應(yīng)在什么范圍內(nèi)?
(2)M,N是否存在這樣的位置,使矩形AMPN的面積最。咳舸嬖,求出這個(gè)最小面積及相應(yīng)的AM,AN的長(zhǎng)度;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,,且.
(Ⅰ) 求,猜想的表達(dá)式,并加以證明;
(Ⅱ)設(shè),求證:對(duì)任意的自然數(shù)都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)某養(yǎng)雞廠想筑一個(gè)面積為144平方米的長(zhǎng)方形
圍欄。圍欄一邊靠墻,筑成這樣的圍欄最少要用多少米鐵絲網(wǎng)?此時(shí)利用墻多
長(zhǎng)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1) 已知函數(shù),求函數(shù)的最小值;
(2) 設(shè)x,y為正數(shù), 且x+y=1,求+的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com