11.向高為H的水瓶(形狀如圖)中注水,注滿為止,則水深h與注水量v的函數(shù)關(guān)系的大致圖象是( 。
A.B.C.D.

分析 從水瓶的構(gòu)造形狀上看,從底部到頂部的變化關(guān)系為:開始寬,逐漸細(xì)小,再變寬,再從函數(shù)的圖象上看,選出答案.

解答 解:從水瓶的構(gòu)造形狀上看,從底部到頂部的變化關(guān)系為:開始寬,逐漸細(xì)小,再變寬.
則注入的水量V隨水深h的變化關(guān)系為:先慢再快,最后又變慢,
那么從函數(shù)的圖象上看,
C對應(yīng)的圖象變化為先快再慢,最后又變快,不符合;A、B對應(yīng)的圖象中間沒有變化,只有D符合條件.
故選:D

點(diǎn)評 本題主要考查函數(shù)的定義及函數(shù)的圖象的關(guān)系,抓住變量之間的變化關(guān)系是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知扇形的半徑為2,面積為4,則這個扇形圓心角的弧度數(shù)為( 。
A.$\sqrt{3}$B.2C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.正四面體ABCD的體積為V,M是正四面體ABCD內(nèi)部的點(diǎn),若“${V_{M-ABC}}≥\frac{1}{4}V$”的事件為X,則概率P(X)為(  )
A.$\frac{17}{32}$B.$\frac{37}{64}$C.$\frac{19}{32}$D.$\frac{27}{64}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知集合A={x|-4<x<1},B={x|2x≥1}.
(Ⅰ)求A∩B,A∪B;
(II)設(shè)函數(shù)$f(x)=\sqrt{4-2x}+{log_2}(2x-1)$的定義域為C,求(∁RA)∩C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知點(diǎn)A(0,1),B(-2,1),向量$\overrightarrow e=(1,0)$,則$\overrightarrow{AB}$在$\overrightarrow e$方向上的投影為(  )
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)$y=tanx+\sqrt{πx-2{x^2}}$的定義域是[0,$\frac{π}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.定義函數(shù)${f_a}(x)={4^x}-(a+1)•{2^x}+a$,其中x為自變量,a為常數(shù).
(I)若當(dāng)x∈[0,2]時,函數(shù)fa(x)的最小值為一1,求a之值;
(II)設(shè)全集U=R,集A={x|f3(x)≥fa(0)},B={x|fa(x)+fa(2-x)=f2(2)},且(∁UA)∩B≠∅中,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若直線l經(jīng)過點(diǎn)(a-2,-1)和(-a-2,1),且與直線2x+3y+1=0垂直,則實數(shù)a的值為(  )
A.-$\frac{2}{3}$B.-$\frac{3}{2}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.菱形ABCD中,E,F(xiàn)分別是AD,CD中點(diǎn),若∠BAD=60°,AB=2,則$\overrightarrow{AF}$•$\overrightarrow{BE}$=-$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊答案