設(shè)f(x)是定義在正整數(shù)集上的函數(shù),且f(x)滿足:“f(k)≥k2成立時,總可推出f(k+1)≥(k+1)2成立”.那么,下列命題總成立的是(  )
分析:由題意對于定義域內(nèi)任意的k,若f(k)≥k2成立,則f(k+1)≥(k+1)2成立的含義是對前一個數(shù)成立,則能推出后一個數(shù)成立,反之不成立.
解答:解:對A,當k=1或2時,不一定有f(k)≥k2成立;
對B,只能得出:對于任意的k≥5,均有f(k)≥k2成立,不能得出:任意的k≤5,均有f(k)≤k2成立;
對于C,若f(7)<49成立不能推出任何結(jié)論;
對D,∵f(4)=25≥16,∴對于任意的k≥4,均有f(k)≥k2成立.
故選D
點評:本題主要考查了命題的真假判斷與應(yīng)用,本題體現(xiàn)的是一種遞推關(guān)系,同時考查了推理能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

15、設(shè)f(x)是定義在正整數(shù)集上的函數(shù),且f(x)滿足:“當f(k)≥k2成立時,總可推出f(k+1)≥(k+1)2成立”.那么,下列命題總成立的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)是定義在正整數(shù)集上的函數(shù),且f(x)滿足:“當f(k)≥k2成立時,總可推出f(k+1)≥(k+1)2成立”,那么,下列命題總成立的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)是定義在正整數(shù)集上的函數(shù),且f(x)滿足:“當f(k)>k2成立時,總可推出f(k+1)>(k+1)2成立”. 那么,下列命題總成立的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省廣州市七區(qū)聯(lián)考高二(下)期末數(shù)學試卷(理科)(解析版) 題型:選擇題

設(shè)f(x)是定義在正整數(shù)集上的函數(shù),且f(x)滿足:“當f(k)≥k2成立時,總可推出f(k+1)≥(k+1)2成立”.那么,下列命題總成立的是( )
A.若f(1)<1成立,則f(10)<100成立
B.若f(2)<4成立,則f(1)≥1成立
C.若f(3)≥9成立,則當k≥1時,均有f(k)≥k2成立
D.若f(4)≥25成立,則當k≥4時,均有f(k)≥k2成立

查看答案和解析>>

同步練習冊答案