【題目】我國古代的天文學(xué)和數(shù)學(xué)著作《周髀算經(jīng)》中記載:一年有二十四個節(jié)氣,每個節(jié)氣晷(guǐ)長損益相同(晷是按照日影測定時刻的儀器,晷長即為所測量影子的長度).二十四節(jié)氣及晷長變化如圖所示,相鄰兩個節(jié)氣晷長的變化量相同,周而復(fù)始.若冬至晷長一丈三尺五寸,夏至晷長一尺五寸(一丈等于十尺,一尺等于十寸),則夏至之后的那個節(jié)氣(小暑)晷長是(
A.五寸
B.二尺五寸
C.三尺五寸
D.四尺五寸

【答案】A
【解析】解:設(shè)晷影長為等差數(shù)列{an},公差為d,a1=135,a13=15,

則135+12d=15,解得d=﹣10.

∴a14=135﹣10×13=5

∴《易經(jīng)》中所記錄的驚蟄的晷影長是5寸.

故選:A.

【考點精析】解答此題的關(guān)鍵在于理解等差數(shù)列的通項公式(及其變式)的相關(guān)知識,掌握通項公式:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位附近只有甲,乙兩個臨時停車場,它們各有50個車位,為了方便市民停車,某互聯(lián)網(wǎng)停車公司對這兩個停車場在工作日某些固定時刻的剩余停車位進(jìn)行記錄,如下表:

時間

8點

10點

12點

14點

16點

18點

停車場甲

10

3

12

6

12

17

停車場乙

13

4

3

2

6

19

如果表中某一時刻停車場剩余停車位數(shù)低于總車位數(shù)的10%,那么當(dāng)車主驅(qū)車抵達(dá)單位附近時,該公司將會向車主發(fā)出停車場飽和警報.
(Ⅰ)假設(shè)某車主在以上六個時刻抵達(dá)單位附近的可能性相同,求他收到甲停車場飽和警報的概率;
(Ⅱ)從這六個時刻中任選一個時刻,求甲停車場比乙停車場剩余車位數(shù)少的概率;
(Ⅲ)當(dāng)停車場乙發(fā)出飽和警報時,求停車場甲也發(fā)出飽和警報的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年3月27日,一則“清華大學(xué)要求從2017級學(xué)生開始,游泳達(dá)到一定標(biāo)準(zhǔn)才能畢業(yè)”的消息在體育界和教育界引起了巨大反響.游泳作為一項重要的求生技能和運(yùn)動項目受到很多人的喜愛.其實,已有不少高校將游泳列為必修內(nèi)容.某中學(xué)為了解2017屆高三學(xué)生的性別和喜愛游泳是否有關(guān),對100名高三學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡游泳

不喜歡游泳

合計

男生

10

女生

20

合計

已知在這100人中隨機(jī)抽取1人,抽到喜歡游泳的學(xué)生的概率為
(Ⅰ)請將上述列聯(lián)表補(bǔ)充完整;
(Ⅱ)判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?
附:

p(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) 的圖象不可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,設(shè)拋物線E:y2=2px(p>0)的焦點為F,準(zhǔn)線為直線l,點A、B在直線l上,點M為拋物線E第一象限上的點,△ABM是邊長為 的等邊三角形,直線MF的傾斜角為60°.
(1)求拋物線E的方程;
(2)如圖,直線m過點F交拋物線E于C、D兩點,Q(2,0),直線CQ、DQ分別交拋物線E于G、H兩點,設(shè)直線CD、GH的斜率分別為k1、k2 , 求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點F(﹣1,0),過直線l:x=﹣2右側(cè)的動點P作PA⊥l于點A,∠APF的平分線交x軸于點B,|PA|= |BF|.

(1)求動點P的軌跡C的方程;
(2)過點F的直線q交曲線C于M,N,試問:x軸正半軸上是否存在點E,直線EM,EN分別交直線l于R,S兩點,使∠RFS為直角?若存在,求出點E的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知AD與BC是四面體ABCD中相互垂直的棱,若AD=BC=6,且∠ABD=∠ACD=60°,則四面體ABCD的體積的最大值是(
A.
B.
C.18
D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合 存在正實數(shù) ,使得定義域內(nèi)任意 都有
(1)若 ,試判斷 是否為 中的元素,并說明理由;
(2)若 ,且 ,求 的取值范圍;
(3)若 ),且 ,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex(x﹣b)(b∈R).若存在x∈[ ,2],使得f(x)+xf′(x)>0,則實數(shù)b的取值范圍是(
A.(﹣∞,
B.(﹣∞,
C.(﹣ ,
D.( ,+∞)

查看答案和解析>>

同步練習(xí)冊答案