如圖,已知長方形ABCD中,AB=2,AD=1,M為DC的中點.將△ADM沿AM折起,使得平面ADM⊥平面ABCM.

(Ⅰ)求證AD⊥BM;
(Ⅱ)點E是線段DB上的一動點,當二面角E-AM-D大小為時,試確定點E的位置.
【答案】分析:(Ⅰ)先證明BM⊥AM,再利用平面ADM⊥平面ABCM,證明BM⊥平面ADM,從而可得AD⊥BM;
(Ⅱ)作出二面角E-AM-D的平面角,利用二面角E-AM-D大小為時,即可確定點E的位置.
解答:(Ⅰ)證明:∵長方形ABCD中,AB=2,AD=1,M為DC的中點
∴AM=BM=
∴BM⊥AM
∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM?平面ABCM
∴BM⊥平面ADM
∵AD?平面ADM
∴AD⊥BM;
(Ⅱ)過點E作MB的平行線交DM于F,

∵BM⊥平面ADM,∴EF⊥平面ADM
在平面ADM中,過點F作AM的垂線,垂足為H,則∠EHF為二面角E-AM-D平面角,即∠EHF=
設FM=x,則DF=1-x,F(xiàn)H=
在直角△FHM中,由∠EFH=,∠EHF=,可得EF=FH=
∵EF∥MB,MB=,∴,∴

∴當E位于線段DB間,且時,二面角E-AM-D大小為
點評:本題考查線面垂直,考查面面角,正確運用面面垂直的性質(zhì),掌握線面垂直的判定方法,正確作出面面角是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知長方形ABCD中,AB=2,AD=1,M為DC的中點.將△ADM沿AM折起,使得平面ADM⊥平面ABCM.

(1)求證:AD⊥BM;
(2)點E是線段DB上的一動點,當二面角A-EM-D大小為
π
3
時,試求
DE
DB
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知長方形ABCD的兩條對角線的交點為E(1,0),且AB與BC所在的直線方程分別為:x+3y-5=0與ax-y+5=0.
(1)求a的值;
(2)求DA所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•臺州模擬)如圖,已知長方形ABCD中,AB=2,AD=1,M為DC的中點.將△ADM沿AM折起,使得平面ADM⊥平面ABCM.

(Ⅰ)求證AD⊥BM;
(Ⅱ)點E是線段DB上的一動點,當二面角E-AM-D大小為
π3
時,試確定點E的位置.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江西省高三三?荚囄目茢(shù)學試卷(解析版) 題型:解答題

如圖,已知長方形ABCD中,AB=2,A1,B1分別是AD,BC邊上的點,且AA1=BB1="1," E,F(xiàn)分別為B1D與AB的中點. 把長方形ABCD沿直線折成直角二面角,且.

(1)求證:

(2)求三棱錐的體積.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知長方形ABCD的兩條對角線的交點為E(1,0),且AB與BC所在的直線方程分別為:x+3y-5=0與ax-y+5=0.
(1)求a的值;
(2)求DA所在的直線方程.

查看答案和解析>>

同步練習冊答案