分析 (Ⅰ)(i)根據(jù)二次函數(shù)的性質(zhì)即可求出函數(shù)的值域,
(ii)根據(jù)二次函數(shù)的性質(zhì),分類討論即可求出,
(Ⅱ)因?yàn)槿魘x|≥2時(shí),f(x)≥0,且f(x)在區(qū)間(2,3]上的最大值為1,f(x)在區(qū)間(2,3]上的最大值只能在閉端點(diǎn)取得,故有f(2)≤f(3)=1,從而a≥-5且b=-3a-8.在分類討論基礎(chǔ)上,將以上關(guān)系變?yōu)椴坏仁浇M,消去c可得b的取值范圍,最后將a2+b2轉(zhuǎn)化為a的函數(shù),求其值域可得a2+b2的最大值和最小值.
解答 解:(Ⅰ)(i),由已知,得f(x)=x2+x+1=(x+$\frac{1}{2}$)2+$\frac{3}{4}$,
又x∈[0,1],
∴f(x)∈[1,3],
∴函數(shù)f(x)的值域的值域?yàn)閇1,3],
(ii)函數(shù)y=f(x)的對(duì)稱軸方程為x=-$\frac{a}{2}$
①當(dāng)-$\frac{a}{2}$≤0時(shí),即a≥0時(shí),函數(shù)f(x)在[0,1]上單調(diào)性遞增,可得$\left\{\begin{array}{l}{f(0)=0}\\{f(1)=1}\end{array}\right.$,解得a=b=0,
②當(dāng)-$\frac{a}{2}$≥1時(shí),即a≤-2時(shí),函數(shù)f(x)在[0,1]上單調(diào)性遞減,可得$\left\{\begin{array}{l}{f(0)=1}\\{f(1)=0}\end{array}\right.$,解得a=-2,b=1,
③0<-$\frac{a}{2}$<$\frac{1}{2}$時(shí),即-1<a<0時(shí),
$\left\{\begin{array}{l}{f(1)=1}\\{f(-\frac{a}{2})=0}\end{array}\right.$,解得a=-4,b=4,或a=b=0(舍去),
④當(dāng)$\frac{1}{2}$≤-$\frac{a}{2}$<1,即-2<a≤-1時(shí),$\left\{\begin{array}{l}{f(0)=1}\\{f(-\frac{a}{2})=0}\end{array}\right.$,解得a=±2,b=1,舍去,
綜上所述a=b=0,或a=-2,b=1
(Ⅱ)由題意函數(shù)圖象為開口向上的拋物線,且f(x)在區(qū)間(2,3]上的最大值只能在閉端點(diǎn)取得,
故有f(2)≤f(3)=1,從而a≥-5且b=-3a-8.
①若f(x)=0有實(shí)根,則△=a2-4b≥0,
在區(qū)間[-2,2]有$\left\{\begin{array}{l}{f(-2)≥0}\\{f(2)≥0}\\{-2≤\frac{a}{2}≤2}\end{array}\right.$即$\left\{\begin{array}{l}{4-2a+b≥0}\\{4+2a+b≥0}\\{-4≤a≤4}\end{array}\right.$,將b=3a-8代入,整理得$\left\{\begin{array}{l}{a≤-\frac{4}{5}}\\{a≤-4}\\{-4≤a≤4}\end{array}\right.$即a=-4,這時(shí)b=4,且△=0.
②若f(x)=0無(wú)實(shí)根,則△=a2-4b<0,將b=-3a-8代入解得-8<a<-4.
綜上-5≤a≤-4.
所以a2+b2=a2+(-3a-8)2=10a2+48a+64,在[-5,-4]單調(diào)遞減,
故(a2+b2)min=32,(a2+b2)max=74.
點(diǎn)評(píng) 本題是典型的二次函數(shù)最值問題,解題需要靈活運(yùn)用初等數(shù)學(xué)思想,包括數(shù)形結(jié)合,分類討論,函數(shù)思想,轉(zhuǎn)化且探究意識(shí)要強(qiáng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{81}{22}$ | B. | $\frac{1}{3}$ | C. | 5 | D. | .4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{2}$-1 | D. | 2-$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com