(1)已知a=1,b=2,p=2,求點(diǎn)Q的坐標(biāo);
(2)已知點(diǎn)P(a,b)(ab≠0)在橢圓+y2=1上,p=,求證:點(diǎn)Q落在雙曲線4x2-4y2=1上;
(3)已知?jiǎng)狱c(diǎn)P(a,b)滿足ab≠0,p=,若點(diǎn)Q始終落在一條關(guān)于x軸對(duì)稱的拋物線上,試問(wèn)動(dòng)點(diǎn)P的軌跡落在哪種二次曲線上,并說(shuō)明理由.
答案: (1)解:當(dāng)a=1,b=2,p=2時(shí),
解方程組
即點(diǎn)Q的坐標(biāo)為(8,16).
(2)證明:由方程組
即點(diǎn)Q的坐標(biāo)為(,),
∵P是橢圓上的點(diǎn),即+b2=1,
∴4()2-4()2=(1-b2)=1.
因此點(diǎn)Q落在雙曲線4x2-4y2=1上.
(3)解:設(shè)Q所在的拋物線方程為y2=2q(x-c),q≠0,
將Q(,)代入方程,得=2q(-c),即b2=2qa-2qca2.
當(dāng)qc=0時(shí),b2=2qa,此時(shí)點(diǎn)P的軌跡落在拋物線上;
當(dāng)qc=時(shí),(a)2+b2=,此時(shí)點(diǎn)P的軌跡落在圓上;
當(dāng)qc>0且qc≠時(shí),=1,此時(shí)點(diǎn)P的軌跡落在橢圓上;
當(dāng)qc<0時(shí),=1,此時(shí)點(diǎn)P的軌跡落在雙曲線上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
a |
b |
p |
p |
a |
b |
p |
a |
b |
p |
a |
b |
p |
a |
b |
MP |
MA |
MB |
MP |
MA |
MB |
a |
b |
a |
b |
a |
b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x |
x+2 |
a |
b |
a |
b |
a |
b |
a |
a |
b |
A、0個(gè) | B、1個(gè) | C、2個(gè) | D、3個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A |
B |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com