科目:高中數(shù)學 來源:學習周報 數(shù)學 人教課標高二版(A選修1-2) 2009-2010學年 第30期 總第186期 人教課標版(A選修1-2) 題型:013
已知f(x+1)=,f(1)=1,x∈N+,猜想f(x)的表達式為
f(x)=
f(x)=
f(x)=
f(x)=
查看答案和解析>>
科目:高中數(shù)學 來源:吉林省白山市友好學校2012屆高三12月聯(lián)考數(shù)學理科試題 題型:013
已知f(x+1)=f(x-1),f(x)=f(-x+2),方程f(x)=0在[0,1]內有且只有一個根,則f(x)=0在區(qū)間[0,2011]內根的個數(shù)為
2011
2010
1006
1005
查看答案和解析>>
科目:高中數(shù)學 來源:2010年高三年級秦皇島市三區(qū)四縣聯(lián)考文科試題 題型:選擇題
已知f(x)是定義在R上的偶函數(shù),對任意的x∈R都有f(x+4)=f(x)+f(2)成立.若f(0)=0,f(1)=2,則f(1) +f(2)+f(3)+…+f(2007)的值等于( )
A.2007 |
B.2008 |
C.2009 |
D.2010 |
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年河北省高三8月月考理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.
(1)求f(x)的解析式;
(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.
【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中設切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函數(shù)求導數(shù),判定單調性,從而得到要是有三解,則需要滿足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依題意
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)設切點為(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)
又切線過點A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
則g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)單調遞減,(0,2)單調遞增,(2,+∞)單調遞減.
∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2
畫出草圖知,當-6<m<2時,m=-2x3+6x2-6有三解,
所以m的取值范圍是(-6,2).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com