已知某隨機變量X的分布列如下(p,q∈R):
X 1 -1
P p q
且X的數(shù)學期望E(X)=
1
2
,那么X的方差D(X)=
3
4
3
4
分析:利用數(shù)學期望公式及概率的性質,求出p,q,再利用方差公式,即可得到結論.
解答:解:∵X的數(shù)學期望E(X)=
1
2
,
p+q=1
p-q=0.5

∴p=
3
4
,q=
1
4

∴X的方差D(X)=(1-
1
2
)
2
×
3
4
+(-1-
1
2
)2×
1
4
=
3
4

故答案為:
3
4
點評:本題考查期望與方差公式,考查概率的性質,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知挑選空軍飛行學員可以說是“萬里挑一”,要想通過需過“五關”--目測、初檢、復檢、文考、政審等.若某校甲、乙、丙三個同學都順利通過了前兩關,有望成為光榮的空軍飛行學員.根據(jù)分析,甲、乙、丙三個同學能通過復檢關的概率分別是0.5,0.6,0.75,能通過文考關的概率分別是0.6,0.5,0.4,通過政審關的概率均為1.后三關相互獨立.
(1)求甲、乙、丙三個同學中恰有一人通過復檢的概率;
(2)設通過最后三關后,能被錄取的人數(shù)為X,求隨機變量X的期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•洛陽一模)某同學進行一項闖關游戲,規(guī)則如下:游戲共三道關,闖每一道關通過,方可去闖下一道關,否則停止;同時規(guī)定第i(i=1,2,3)次闖關通過得i分,否則記0分.已知該同學每道關通過的概率都為0.8,且不受其它因素影響.
(1)求該同學恰好得3分的概率;
(2)設該同學停止闖關時所得總分為X,求隨機變量X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年大連市高二六月月考理科數(shù)學卷 題型:解答題

(本小題滿分12分)

某象棋教練用下列方式考核隊員:任一名隊員可以選擇與一級棋士或二級棋士對奕,規(guī)定與一級棋士對奕取勝得3分,不勝得0分,與二級棋士對弈取勝得2分,不勝得0分,如果前兩局得分超過3分即算考核合格,否則比賽三局.某位隊員與一級棋士對弈獲勝的概率為q1,與二級棋士對弈獲勝的概率為0.6,該隊員選擇先與一級棋士對奕,以后都與二級棋士對奕,用X表示該隊員考核結束后所得的總分,已知P(X=0)=0.128.

(1)求q1的值;

(2)寫出隨機變量X的分布列并求出數(shù)學期望EX;

(3)試比較該隊員選擇都與二級棋士對奕與上述方式最后得分大于3的概率的大小;

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知挑選空軍飛行學員可以說是“萬里挑一”,要想通過需過“五關”--目測、初檢、復檢、文考、政審等.若某校甲、乙、丙三個同學都順利通過了前兩關,有望成為光榮的空軍飛行學員.根據(jù)分析,甲、乙、丙三個同學能通過復檢關的概率分別是0.5,0.6,0.75,能通過文考關的概率分別是0.6,0.5,0.4,通過政審關的概率均為1.后三關相互獨立.
(1)求甲、乙、丙三個同學中恰有一人通過復檢的概率;
(2)設通過最后三關后,能被錄取的人數(shù)為X,求隨機變量X的期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源:2012年河南省洛陽市高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

某同學進行一項闖關游戲,規(guī)則如下:游戲共三道關,闖每一道關通過,方可去闖下一道關,否則停止;同時規(guī)定第i(i=1,2,3)次闖關通過得i分,否則記0分.已知該同學每道關通過的概率都為0.8,且不受其它因素影響.
(1)求該同學恰好得3分的概率;
(2)設該同學停止闖關時所得總分為X,求隨機變量X的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案