已知曲線f(x)=x3-3x2+2x,則過原點的切線方程為
y=2x或y=-
1
4
x
y=2x或y=-
1
4
x
分析:求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義:切點處的導(dǎo)數(shù)值是切線的斜率,分原點是切點和原點不是切點兩類求.
解答:解f′(x)=3x2-6x+2.設(shè)切線的斜率為k.
(1)當(dāng)切點是原點時k=f′(0)=2,
所以所求曲線的切線方程為y=2x.
(2)當(dāng)切點不是原點時,設(shè)切點是(x0,y0),
則有y0=x03-3x02+2x0,k=f′(x0)=3x02-6x0+2,①
又k=
y0
x0
=x02-3x0+2,②
由①②得x0=
3
2
,k=
y0
x0
=-
1
4

∴所求曲線的切線方程為y=-
1
4
x.
故曲線的切線方程是y=2x;y=-
1
4
x
故答案為:y=2x或y=-
1
4
x.
點評:本題考查導(dǎo)數(shù)的幾何意義:切點處的導(dǎo)數(shù)值是切線的斜率;注意“在點處的切線”與“過點的切線”的區(qū)別.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線f(x)=
x-1
在點A(2,1)處的切線為直線l
(1)求切線l的方程;
(2)求切線l,x軸及曲線所圍成的封閉圖形的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+5,若曲線f(x)在點(1,f(1))處的切線斜率為3,且當(dāng)x=
23
時,y=f(x)有極值.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在[-4,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線f(x)=x3+bx2+cx在點A(-1,f(-1)),B(3,f(3))處的切線互相平行,且函數(shù)f(x)的一個極值點為x=0.
(Ⅰ)求實數(shù)b,c的值;
(Ⅱ)若函數(shù)y=f(x),x∈[-
12
,3]
的圖象與直線y=m恰有三個交點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案